To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical propertie...To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical properties was discussed.The results show that cross rolling of the Mo plates is beneficial for the formation of the rotated cube component,i.e.,{001}<110>.The corresponding orientation density exhibits a positive correlation with the total rolling deformation and the current-pass deformation.When the total deformation is 96%or greater,the Mo plates form a texture orientation dominated by{001}<110>,whereas theγ-fibre texture becomes weaker and the cube texture{100}<100>disappears completely.The presence of{001}<110>has great effects on the properties of cross-rolled Mo plates,which is beneficial for strength enhancement and plasticity reduction in both the rolling direction(RD)and the transverse direction(TD).展开更多
The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of ...The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of Y_(2)O_(3),and the corresponding effects of particle shape and size on mechanical properties of sintered Mo−Y_(2)O_(3) alloys were investigated.It is found that spherical particles with sizes below 200 nm are preferred due to the dominant intragranular distribution of second phases associated with better strengthening effect originating from dislocation pinning.With smaller particle size of Y_(2)O_(3) nanospheres(105 nm),the tensile strength of corresponding Mo alloy is enhanced by about 43.8%,much higher than that(8.3%)reinforced by second phase nanospheres with larger particle size(322 nm).Meanwhile,with similar particle size(around 100 nm),the spherical shape exhibits better strengthening effect than the one reinforced by one-dimensional rod-like second phase.展开更多
Objective:To observe the serum levels of Fibrinogen(Fg),Interleukin-33(IL-33)in patients with cerebral infarction and periodontitis,and to explore the relationship of cerebral infarction and periodontitis.Methods:104 ...Objective:To observe the serum levels of Fibrinogen(Fg),Interleukin-33(IL-33)in patients with cerebral infarction and periodontitis,and to explore the relationship of cerebral infarction and periodontitis.Methods:104 subjects were included in this study.Among them,23 were patients with CI and CP(group CI+CP),28 with CI(group CI),28 with CP(group CP)and 25 were healthy volunteers(group H).The periodontal indexes and the serum levels of Fg and IL-33 were measured.Results:In groups of CI+CP,CP and CI the Fg and IL-33 were significantly higher than those in the group H(P<0.01).In groups of CI+CP the Fg and Il-33 was higher than group CI and CP(P<0.05).Conclusion:In patients with cerebral infarction with periodontitis,the levels of fibrinogen and interleukin-33 were both increased,and their concentrations were in direct proportion to the periodontal indexes。展开更多
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical...To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).展开更多
基金Project(2017YFB0306001)supported by the National Key R&D Program of ChinaProject(502221802)supported by the Innovation-Driven Project of Central South University,China。
文摘To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical properties was discussed.The results show that cross rolling of the Mo plates is beneficial for the formation of the rotated cube component,i.e.,{001}<110>.The corresponding orientation density exhibits a positive correlation with the total rolling deformation and the current-pass deformation.When the total deformation is 96%or greater,the Mo plates form a texture orientation dominated by{001}<110>,whereas theγ-fibre texture becomes weaker and the cube texture{100}<100>disappears completely.The presence of{001}<110>has great effects on the properties of cross-rolled Mo plates,which is beneficial for strength enhancement and plasticity reduction in both the rolling direction(RD)and the transverse direction(TD).
基金financially supported by the National Key R&D Program of China (No. 2017YFB0306001)Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, China (No. 20-065-40-001k)。
文摘The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of Y_(2)O_(3),and the corresponding effects of particle shape and size on mechanical properties of sintered Mo−Y_(2)O_(3) alloys were investigated.It is found that spherical particles with sizes below 200 nm are preferred due to the dominant intragranular distribution of second phases associated with better strengthening effect originating from dislocation pinning.With smaller particle size of Y_(2)O_(3) nanospheres(105 nm),the tensile strength of corresponding Mo alloy is enhanced by about 43.8%,much higher than that(8.3%)reinforced by second phase nanospheres with larger particle size(322 nm).Meanwhile,with similar particle size(around 100 nm),the spherical shape exhibits better strengthening effect than the one reinforced by one-dimensional rod-like second phase.
基金Natural science fund project of Hainan Province(No.819MS125)。
文摘Objective:To observe the serum levels of Fibrinogen(Fg),Interleukin-33(IL-33)in patients with cerebral infarction and periodontitis,and to explore the relationship of cerebral infarction and periodontitis.Methods:104 subjects were included in this study.Among them,23 were patients with CI and CP(group CI+CP),28 with CI(group CI),28 with CP(group CP)and 25 were healthy volunteers(group H).The periodontal indexes and the serum levels of Fg and IL-33 were measured.Results:In groups of CI+CP,CP and CI the Fg and IL-33 were significantly higher than those in the group H(P<0.01).In groups of CI+CP the Fg and Il-33 was higher than group CI and CP(P<0.05).Conclusion:In patients with cerebral infarction with periodontitis,the levels of fibrinogen and interleukin-33 were both increased,and their concentrations were in direct proportion to the periodontal indexes。
基金supported by the National Key R&D Program of China(No.2022YFB3705402)。
文摘To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).