The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance...The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys.展开更多
基金financially supported by the National Natural Science Foundation of China(51971071 and 52075112)Fundamental Research Projects of Science&Technology Innovation and development Plan in Yantai City(2022JCYJ023)。
文摘The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys.