The second near-infrared(NIR-II,1,000 to 1,700 nm)molecular fluorophores containing donor–acceptor–donor conjugated backbone have attracted substantial attention due to their outstanding advantages,such as stable em...The second near-infrared(NIR-II,1,000 to 1,700 nm)molecular fluorophores containing donor–acceptor–donor conjugated backbone have attracted substantial attention due to their outstanding advantages,such as stable emission and facilely tuned photophysical properties.However,it is still challenging for them to simultaneously achieve high brightness and red-shifted absorption and emission.Herein,furan is adopted as the D unit to construct NIR-II fluorophores,demonstrating red shift of absorption,enhanced absorption coefficient,and fluorescent quantum yield when compared with the generally used thiophene counterparts.The high brightness and desirable pharmacokinetics of the optimized fluorophore,IR-FFCHP,endows improved performance for angiography and tumor-targeting imaging.Furthermore,dual-NIR-II imaging of tumor and sentinel lymph nodes(LNs)has been achieved with IR-FFCHP and PbS/CdS quantum dots,enabling the in vivo imaging navigated LN surgery in tumor-bearing mice.This work demonstrates the potential of furan for constructing bright NIR-II fluorophores for biological imaging.展开更多
It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report ...It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report a molecular engineering approach to afford NIR-Ⅱ fluorophores with these merits based on fused-ring acceptor(FRA)molecules.Dioctyl 3,4-propylenedioxy thiophene(PDOT-C8)is utilized as the bridging donor to replace 3-ethylhexyloxy thiophene(3-EHOT),leading to more than 20 times enhancement of brightness.The nanofluorophores(NFs)based on the optimized CPTIC-4F molecule exhibit an emission peak of 1,110 nm with a fluorescence quantum yield(QY)of 0.39%(QY of IR-26 is 0.050%in dichloroethane as reference)and peak absorption coefficient of 14.5 x 10^4 M^-1·cm^-1 in aqueous solutions,which are significantly higher than those of 3-EHOT based COTIC-4F NFs.It is found that PDOT-C8 can weaken intermolecular aggregation,enhance protection of molecular backbone from water,and decrease backbone distortion,beneficial for the high brightness.Compared with indocyanine green with same injection dose,CPTIC-4F NFs show 10 times higher signal-to-background ratio for whole body vessels imaging at 1,300 nm long pass filters.展开更多
基金the National Natural Science Foundation of China(Nos.21772084 and 12034008)Fundamental Research Layout of Shenzhen(No.JCY20180504165657443)+3 种基金Guangdong Provincial Natural Science Foundation-Yueshen Joint Funding(Youth Project)(No.2019A1515110464)the Shenzhen Science and Technology Commission-free exploration/general project(No.JCYJ20190812151209348)Special fund for local science and technology development guided by central government is acknowledged.The support from Shanghai Rising Star Program(No.21QA1402600)the graduate fellowship(201808440345)from Chinese Scholarship Council are also acknowledged.
文摘The second near-infrared(NIR-II,1,000 to 1,700 nm)molecular fluorophores containing donor–acceptor–donor conjugated backbone have attracted substantial attention due to their outstanding advantages,such as stable emission and facilely tuned photophysical properties.However,it is still challenging for them to simultaneously achieve high brightness and red-shifted absorption and emission.Herein,furan is adopted as the D unit to construct NIR-II fluorophores,demonstrating red shift of absorption,enhanced absorption coefficient,and fluorescent quantum yield when compared with the generally used thiophene counterparts.The high brightness and desirable pharmacokinetics of the optimized fluorophore,IR-FFCHP,endows improved performance for angiography and tumor-targeting imaging.Furthermore,dual-NIR-II imaging of tumor and sentinel lymph nodes(LNs)has been achieved with IR-FFCHP and PbS/CdS quantum dots,enabling the in vivo imaging navigated LN surgery in tumor-bearing mice.This work demonstrates the potential of furan for constructing bright NIR-II fluorophores for biological imaging.
基金Y.L.acknowledges financial supports from the National Natural Science Foundation of China(No.21772084)Fundamental Research Layout of Shenzhen(No.JCY20180504165657443)+2 种基金H.S.thanks the National Natural Science Foundation of China(Nos.11727810,61720106009 and 21603074)the Science and Technology Commission of Shanghai Municipality(No.19JC1412200)for funding support and the ECNU Multifunctional Platform for Innovation(001)and HPC Research Computing Team for providing computational and storage resourcesX.Z thanks the funding supports from the National Natural Science Foundation of China(Nos.91859101,81971744,and U1932107).
文摘It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report a molecular engineering approach to afford NIR-Ⅱ fluorophores with these merits based on fused-ring acceptor(FRA)molecules.Dioctyl 3,4-propylenedioxy thiophene(PDOT-C8)is utilized as the bridging donor to replace 3-ethylhexyloxy thiophene(3-EHOT),leading to more than 20 times enhancement of brightness.The nanofluorophores(NFs)based on the optimized CPTIC-4F molecule exhibit an emission peak of 1,110 nm with a fluorescence quantum yield(QY)of 0.39%(QY of IR-26 is 0.050%in dichloroethane as reference)and peak absorption coefficient of 14.5 x 10^4 M^-1·cm^-1 in aqueous solutions,which are significantly higher than those of 3-EHOT based COTIC-4F NFs.It is found that PDOT-C8 can weaken intermolecular aggregation,enhance protection of molecular backbone from water,and decrease backbone distortion,beneficial for the high brightness.Compared with indocyanine green with same injection dose,CPTIC-4F NFs show 10 times higher signal-to-background ratio for whole body vessels imaging at 1,300 nm long pass filters.