期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation 被引量:10
1
作者 Bing-jian WEI Yu-lin CHENG +2 位作者 Yuan-yuan LIU zhun-da zhu Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2287-2306,共20页
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation... In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating. 展开更多
关键词 AZ31 magnesium alloy magnetron sputtering plasma electrolytic oxidation dry sliding wear CORROSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部