A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with takin...A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.展开更多
A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experimen...A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.展开更多
Based on the concept of ubiquitiform,a ubiquitiformal crack extension model is developed for quasi-brittle materials.Numerical simulations are carried out using the ABAQUS software with the XFEM-based cohesive segment...Based on the concept of ubiquitiform,a ubiquitiformal crack extension model is developed for quasi-brittle materials.Numerical simulations are carried out using the ABAQUS software with the XFEM-based cohesive segments method to determine the ubiquitiformal crack extension path or fracture surface profile of the material under quasi-static loading.Such a ubiquitiformal crack model removes the singularity of a fractal crack;for the latter,the boundary value problem cannot be uniquely defined.In the simulation,the material properties,e.g.,the tensile strength,are assumed to obey the Weibull distribution.The meso-element equivalent method is used to determine the correlation between the Weibull distribution parameters and the aggregate gradation of concrete materials.The numerical results show that the complexities of the ubiquitiformal crack configurations are in good agreement with the previous experimental data.Through the numerical simulation,it is further demonstrated that the complexity of a ubiquitiformal crack is insensitive to the random spatial distribution of the aggregates,but more dependent on the Weibull distribution parameters which reflect the heterogeneity of the concrete.展开更多
基金This work was supported by the National Natural Science Foundation of China[grant numbers 11521062].
文摘A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.
基金the National Natural Science Foundation of China(Grant No.11772056)the NSAF Joint Fund(Grants No.U1630113)and the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.
基金This work was supported by the National Natural Science Foundation of China(11772056)。
文摘Based on the concept of ubiquitiform,a ubiquitiformal crack extension model is developed for quasi-brittle materials.Numerical simulations are carried out using the ABAQUS software with the XFEM-based cohesive segments method to determine the ubiquitiformal crack extension path or fracture surface profile of the material under quasi-static loading.Such a ubiquitiformal crack model removes the singularity of a fractal crack;for the latter,the boundary value problem cannot be uniquely defined.In the simulation,the material properties,e.g.,the tensile strength,are assumed to obey the Weibull distribution.The meso-element equivalent method is used to determine the correlation between the Weibull distribution parameters and the aggregate gradation of concrete materials.The numerical results show that the complexities of the ubiquitiformal crack configurations are in good agreement with the previous experimental data.Through the numerical simulation,it is further demonstrated that the complexity of a ubiquitiformal crack is insensitive to the random spatial distribution of the aggregates,but more dependent on the Weibull distribution parameters which reflect the heterogeneity of the concrete.