Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy cent...Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin.Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2013CB921804)the National Key Research and Development Program of China (Grant No. 2016YFA0301803)the Education Department of Anhui Province (Grant No. KJ2015A299)
文摘Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin.Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.