期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Significant effects of transport on nanoparticles during new particle formation events in the atmosphere of Beijing
1
作者 Dongjie Shang Min Hu +10 位作者 Lizi Tang Xin Fang Ying Liu Yusheng Wu zhuofei du Xuhui Cai Zhijun Wu Shengrong Lou Mattias Hallquist Song Guo Yuanhang Zhang 《Particuology》 SCIE EI CAS CSCD 2023年第9期1-10,共10页
The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepe... The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepen the understanding of how the“polluted”NPF events occur,a one-monthcomprehensive measurement was conducted in the atmosphere of Beijing during the summer of2016.The“clean”NPF events(frequency=22%)(condensation sink,CS<0.015 s^(-1))were found to becaused by local nucleation and growth.The“polluted”NPF events(frequency=28%)(CS>0.015 s^(-1))were influenced by both local nucleation-growth and regional transport,and the contributions from thetwo factors to 6e25 nm particle number concentration were 60%and 40%,respectively.This studyemphasized the importance of the transport for nanoparticles in relatively polluted atmospheres,and forthat the regional joint particle pollution control would be an essential policy. 展开更多
关键词 New particle formation TRANSPORT NANOPARTICLES Sulfuric acid
原文传递
Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China 被引量:2
2
作者 Kai Qiao Zhijun Wu +12 位作者 Xiangyu Pei Qianyun Liu Dongjie Shang Jing Zheng zhuofei du Wenfei Zhu Yusheng Wu Shengrong Lou Song Guo Chak K.Chan Ravi Kant Pathak Mattias Hallquist Min Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第11期69-77,共9页
Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical ... Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm3 for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm3 for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth. 展开更多
关键词 Effective density Atmospheric aerosol Centrifugal particle mass analyzer Rural site New particle formation
原文传递
机动车尾气二次有机气溶胶生成研究 被引量:1
3
作者 国纪良 彭剑飞 +3 位作者 宋爱楠 张进生 杜卓菲 毛洪钧 《化学进展》 SCIE CAS CSCD 北大核心 2023年第1期177-188,共12页
二次有机气溶胶(SOA)是大气细颗粒物(PM2.5)的重要组分,对大气能见度、公众健康以及区域或全球气候变化具有重要影响。在城市地区,机动车尾气排放的气态前体物在大气中氧化产生高浓度SOA,是城市空气质量下降的重要因素。本文综述了近些... 二次有机气溶胶(SOA)是大气细颗粒物(PM2.5)的重要组分,对大气能见度、公众健康以及区域或全球气候变化具有重要影响。在城市地区,机动车尾气排放的气态前体物在大气中氧化产生高浓度SOA,是城市空气质量下降的重要因素。本文综述了近些年机动车尾气SOA生成的相关研究成果,重点关注关键前体物的识别与排放表征、SOA生成特征、演化过程与影响因素,对比了不同研究得到的机动车SOA生成因子的差异,并提出新测量技术、新反应机制和新参数化方案将是未来研究重点关注的方向。 展开更多
关键词 机动车尾气 二次有机气溶胶 半/ 中等挥发性有机物 老化过程 影响因素
原文传递
Brake wear-derived particles:Single-particle mass spectral signatures and real-world emissions
4
作者 Jiayuan Liu Jianfei Peng +7 位作者 Zhengyu Men Tiange Fang Jinsheng Zhang zhuofei du Qijun Zhang Ting Wang Lin Wu Hongjun Mao 《Environmental Science and Ecotechnology》 SCIE 2023年第3期88-97,共10页
Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter(PM).The single-particle spectral fingerprints of brake wear particles(BWPs)provide essential information for understa... Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter(PM).The single-particle spectral fingerprints of brake wear particles(BWPs)provide essential information for understanding their formation mechanism and atmospheric contributions.Herein,we obtained the single-particle mass spectra of BWPs by combining a brake dynamometer with an online single particle aerosol mass spectrometer and quantified real-world BWP emissions through a tunnel observation in Tianjin,China.The pure BWPs mainly include three distinct types of particles,namely,Bacontaining particles,mineral particles,and carbon-containing particles,accounting for 44.2%,43.4%,and 10.3%of the total BWP number concentration,respectively.The diversified mass spectra indicate complex BWP formation pathways,such as mechanical,phase transition,and chemical processes.Notably,the mass spectra of Ba-containing particles are unique,which allows them to serve as an excellent indicator for estimating ambient BWP concentrations.By evaluating this indicator,we find that approximately 4.0%of the PM in the tunnel could be attributable to brake wear;the real-world fleet-average emission factor of 0.28 mg km1 veh1 is consistent with the estimation obtained using the receptor model.The results presented herein can be used to inform assessments of the environmental and health impacts of BWPs to formulate effective emissions control policies. 展开更多
关键词 Non-exhaust emission Brake wear Single-particle aerosol mass spectrometry Tunnel measurement Emission factor
原文传递
Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing 被引量:1
5
作者 Qi Zou Keding Lu +3 位作者 Yusheng Wu Yudong Yang zhuofei du Min Hu 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期73-81,共9页
The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision ... The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. Thej(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series ofj(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing. 展开更多
关键词 Photolysis frequency of nitrogen dioxide Chemical actinometer Spectroradiometer Tropospheric ultraviolet visible radiationmodel
原文传递
Potential of secondary aerosol formation from Chinese gasoline engine exhaust
6
作者 zhuofei du Min Hu +12 位作者 Jianfei Peng Song Guo Rong Zheng Jing Zheng Dongjie Shang Yanhong Qin He Niu Mengren Li Yudong Yang Sihua Lu Yusheng Wu Min Shao Shijin Shuai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期348-357,共10页
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso... Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. 展开更多
关键词 Port fuel injection Gasoline engine exhaust Secondary aerosol formation Chamber simulation Secondary organic aerosol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部