期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Conversion characteristics and mechanism analysis of gaseous dichloromethane degraded by a VUV light in different reaction media 被引量:4
1
作者 Jianming Yu Wenji Cai +3 位作者 Jianmeng Chen Li Feng Yifeng Jiang zhuowei cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第10期1777-1784,共8页
The photodegradation of gaseous dichloromethane (DCM) by a vacuum ultraviolet (VUV) light in a spiral reactor was investigated with different reaction media and initial concentrations. Through the combination of d... The photodegradation of gaseous dichloromethane (DCM) by a vacuum ultraviolet (VUV) light in a spiral reactor was investigated with different reaction media and initial concentrations. Through the combination of direct photolysis, O3 oxidation and HO. oxidation, DCM was ultimately mineralized into inorganic compounds (such as HC1, CO2, H20, etc.) in the air with relative humidity (RH) of 75%-85%. During the photodegradation process, some small organic acids (including formic acid, acetic acid) were also detected and the intermediates were more soluble than DCM, providing a possibility for its combination with subsequent biodegradation. Based on the detected intermediates and the confirmed radicals, a photodegradation pathway of DCM by VUV was proposed. With RH 75%- 80% air as the reaction medium, the DCM removal followed the second-order kinetic model at inlet concentration of 100-1000 mg/m3. Kinetic analysis showed that the reaction media affected the kinetic constants of DCM conversion by a large extent, and RH 80% air could cause a much lower half-life for its conversion. Such results supported the possibility that VUV photodegradation could be used not only for the mineralization of DCM but also as a pretreatment before biodegradation. 展开更多
关键词 DICHLOROMETHANE VUV photodegradation MECHANISM carbon balance kinetic analysis
原文传递
Kinetic analysis and bacterium metabolization of α-pinene by a novel identified Pseudomonas sp.strain 被引量:3
2
作者 zhuowei cheng Pengfei Sun +2 位作者 Yifeng Jiang Lili Zhang Jianmeng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第10期1806-1815,共10页
Biodegradation has become a popular alternative remediation technology for its economic and ecological advantages. An aerobic bacterium (strain ZW) capable of degrading α-pinene was isolated from a biofilter by a s... Biodegradation has become a popular alternative remediation technology for its economic and ecological advantages. An aerobic bacterium (strain ZW) capable of degrading α-pinene was isolated from a biofilter by a selective enrichment. Based on the 16S rRNA gene analysis and physiochemical properties, this strain was identified as Pseudomonas veronii. Under the optimized condition achieved by the response surface methodology (RSM), as well as pH 6.82, temperature 26.3℃ and NaC1 concentration 1.36%, almost 100% α-pinene could be removed within 45 hr. Enzymatic biodegradation by the crude intracellular enzyme could be described well by the Michaelis-Menten model in which the maximum degradation rate Vraax and the half-saturation constant Km were calculated to be 0.431 mmol/(L.min) and 0.169 mmol/L, respectively. Activity assay of catechol suggested that the strain ZW possessed a catechol- 1,2-dioxygenase and could decompose benzene-ring through ortho ring cleavage. Based on the identified intermediates by GC/MS, a new metabolic pathway was proposed, in which the final metabolites were some simpler organic and inorganic compounds. The present work demonstrated that the strain ZW would have a great application prospect for the remediation of α-pinene-contaminated environment. 展开更多
关键词 Pseudomonas veronii ct-pinene growth conditions kinetics analysis metabolic pathway
原文传递
Removal characteristics and kinetic analysis of an aerobic vapor-phase bioreactor for hydrophobic alpha-pinene 被引量:2
3
作者 Yifeng Jiang Shanshan Li +2 位作者 zhuowei cheng Runye Zhu Jianmeng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第8期1439-1448,共10页
Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat... Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat for the removal of hydrophobic α-pinene. When inoculated with two pure degraders and adapted activated sludge, a removal efficiency (RE) of more than 95% was achieved after a start- up period of 11 days. The maximum elimination capacity (EC) of 50 g/(m^3.hr) with RE of 94% was obtained at empty bed retention time (EBRT) of 102 sec. When higher α-pinene concentrations and shorter EBRTs were applied, the REs and ECs decreased significantly due to mass-transfer and biological reaction limitations. As deduced from the experimental results, approximately 74% of ct-pinene were completely mineralized by the consortiums and the biomass yield was 0.60 g biomass/g α-pinene. Sequence analysis of the selected bands excised from denaturing gradient gel electrophoresis revealed that the inoculated pure cultures could be present during the whole operation, and others were closely related to bacteria being able to degrade hydrocarbons. The kinetic results demonstrated that the whole biofiltration for α-pinene was diffusion-limit controlled owing to its hydrophobic characteristics. These findings indicated that this bacterial biofiltration is a promising technology for the remediation of hydrophobic industrial waste gases containing ct-pinene. 展开更多
关键词 BIOFILTERS gaseous α-pinene removal characteristics microbial community kinetic parameters
原文传递
Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter 被引量:2
4
作者 Jianming Yu Wenji Cai +1 位作者 zhuowei cheng Jianmeng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1108-1117,共10页
A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was e... A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was evaluated by response surface methodology. Maximum biodegradation (5.35 mg/(L.hr)) was achieved under cultivation at 32.8℃, pH 7.3, and 0.66% NaC1. The growth and biodegradation processes were well fitted by Haldane's kinetic model, yielding maximum specific growth and degradation rates of 0.133 hr^-1 and 0.856 hr^-1, respectively. The microorganism efficiently degraded a mixture of DCM and coexisting components (benzene, toluene and chlorobenzene). The carbon recovery (52.80%-94.59%) indicated that the targets were predominantly mineralized and incorporated into cell materials. Electron acceptors increased the DCM biodegradation rate in the following order: mixed 〉 oxygen 〉 iron 〉 sulfate 〉 nitrate. The highest dechlorination rate was 0.365 mg C1-/(hr.mg biomass), obtained in the presence of mixed electron acceptors. Removal was achieved in a continuous biotrickling filter at 56%-85% efficiency, with a mineralization rate of 75.2%. Molecular biology techniques revealed the predominant strain as P. pnomenusa LX-1. These results clearly demonstrated the effectiveness of strain LX-1 in treating DCM-containing industrial effluents. As such, the strain is a strong candidate for remediation of DCM coexisting with other organic compounds. 展开更多
关键词 DICHLOROMETHANE Pandoraea pnomenusa biodegradation characteristics removal performance carbon balance
原文传递
Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO_2/HZSM-5 catalysts 被引量:9
5
作者 Liying Jiang Guofeng Nie +5 位作者 Runye Zhu Jiade Wang Jianmeng Chen Yubo Mao zhuowei cheng Willam A.Anderson 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期266-273,共8页
Chlorobenzene removal was investigated in a non-thermal plasma reactor using CeO2/HZSM-5catalysts.The performance of catalysts was evaluated in terms of removal and energy efficiency.The decomposition products of chlo... Chlorobenzene removal was investigated in a non-thermal plasma reactor using CeO2/HZSM-5catalysts.The performance of catalysts was evaluated in terms of removal and energy efficiency.The decomposition products of chlorobenzene were analyzed.The results show that CeO2/HZSM-5 exhibited a good catalytic activity,which resulted in enhancements of chlorobenzene removal,energy efficiency,and the formation of lower amounts of by-products.With regards to CO2 selectivity,the presence of catalysts favors the oxidation of by-products,leading to a higher CO2 selectivity.With respect to ozone,which is considered as an unavoidable by-product in air plasma reactors,a noticeable decrease in its concentration was observed in the presence of catalysts.Furthermore,the stability of the catalyst was investigated by analyzing the evolution of conversion in time.The experiment results indicated that CeO2/HZSM-5 catalysts have excellent stability:chlorobenzene conversion only decreased from 78%to 60%after 75 hr,which means that the CeO2/HZSM-5 suffered a slight deactivation.Some organic compounds and chlorinated intermediates were adsorbed or deposited on the catalysts surface as shown by the results of Fourier Transform Infrared(FT-IR) spectroscopy,scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy(EDS) analyses of the catalyst before and after the reaction,revealing the cause of catalyst deactivation. 展开更多
关键词 Non-thermal plasma Catalysis Chlorobenzene Degradation CeO2/HZSM-5
原文传递
Synthesis,characterization,and photocatalytic activity of porous La–N–co-doped TiO_2 nanotubes for gaseous chlorobenzene oxidation 被引量:4
6
作者 zhuowei cheng Zhiqi Gu +2 位作者 Jianmeng Chen Jianming Yu Lingjun Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期203-213,共11页
The photocatalytic oxidation of gaseous chlorobenzene(CB) by the 365 nm-induced photocatalyst La/N–Ti O2, synthesized via a sol–gel and hydrothermal method, was evaluated. Response surface methodology(RSM) was u... The photocatalytic oxidation of gaseous chlorobenzene(CB) by the 365 nm-induced photocatalyst La/N–Ti O2, synthesized via a sol–gel and hydrothermal method, was evaluated. Response surface methodology(RSM) was used to model and optimize the conditions for synthesis of the photocatalyst. The optimal photocatalyst was 1.2La/0.5N–Ti O2(0.5) and the effects of La/N on crystalline structure, particle morphology, surface element content, and other structural characteristics were investigated by XRD(X-ray diffraction), TEM(Transmission Electron Microscopy), FTIR(Fourier transform infrared spectroscopy), UV–vis(Ultraviolet–visible spectroscopy), and BET(Brunauer Emmett Teller). Greater surface area and smaller particle size were produced with the co-doped Ti O2 nanotubes than with reference Ti O2. The removal of CB was effective when performed using the synthesized photocatalyst,though it was less efficient at higher initial CB concentrations. Various modified Langmuir-Hinshelwood kinetic models involving the adsorption of chlorobenzene and water on different active sites were evaluated. Fitting results suggested that competitive adsorption caused by water molecules could not be neglected, especially for environments with high relative humidity. The reaction intermediates found after GC–MS(Gas chromatography–mass spectrometry) analysis indicated that most were soluble, low-toxicity, or both. The results demonstrated that the prepared photocatalyst had high activity for VOC(volatile organic compounds) conversion and may be used as a pretreatment prior to biopurification. 展开更多
关键词 Photocatalysis La/N–Ti O2 Chlorobenzene Conversion efficiency Kinetic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部