The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembli...The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020(hereafter 2020PHR-like event)would change under global warming is investigated.An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer(Rx35day)is introduced.This accumulated precipitation index in summer 2020 is 60%stronger than the climatology,and a statistical analysis further shows that the 2020 event is a 1-in-70-year event.The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble(MME)of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming.Based on the Kolmogorov-Smirnoff test,one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study.The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios(CMIP5 RCP4.5,CMIP6 SSP1-2.6,and SSP2-4.5)and 3-5 times greater under higher-emission scenarios(3.0 times for CMIP5 RCP8.5,2.9 times for CMIP6 SSP3-7.0,and 4.8 times for CMIP6 SSP5-8.5).The inter-model spread of the probability change is small,lending confidence to the projection results.The results provide a scientific reference for mitigation of and adaptation to future climate change.展开更多
基金supported by the National Natural Science Foundation of China[grant number 42088101] and the National Natural Science Foundation of China[grant number 42005020].
基金jointly supported by the National Key Research and Development Program of China [grant numbers 2020YFA0608901 and 2019YFC1510004]the National Natural Science Foundation of China[grant number 42005020]+1 种基金the Natural Science Foundation of Jiangsu[grant number BK20190781]the Postgraduate Research&Practice Innovation Program of Jiangsu Province [grant number KYCX21_0964]
基金supported by the National Natural Science Foundation of China(Grant No.42088101)the National Key Research and Development Program of China(2020YFA0608901 and 2019YFC1510004)+1 种基金the Natural Science Foundation of Jiangsu(BK20190781),the National Natural Science Foundation of China(Grant No.42005020)the General Program of Natural Science Foundation of Jiangsu Higher Education Institutions(19KJB170019).
文摘The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020(hereafter 2020PHR-like event)would change under global warming is investigated.An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer(Rx35day)is introduced.This accumulated precipitation index in summer 2020 is 60%stronger than the climatology,and a statistical analysis further shows that the 2020 event is a 1-in-70-year event.The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble(MME)of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming.Based on the Kolmogorov-Smirnoff test,one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study.The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios(CMIP5 RCP4.5,CMIP6 SSP1-2.6,and SSP2-4.5)and 3-5 times greater under higher-emission scenarios(3.0 times for CMIP5 RCP8.5,2.9 times for CMIP6 SSP3-7.0,and 4.8 times for CMIP6 SSP5-8.5).The inter-model spread of the probability change is small,lending confidence to the projection results.The results provide a scientific reference for mitigation of and adaptation to future climate change.