期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synergistic coupling of 0D-2D heterostructure from ZnO and Ti_(3)C_(2)T_(x)MXene-derived TiO_(2)for boosted NO_(2)detection at room temperature 被引量:1
1
作者 Hong-Peng Li Jie Wen +7 位作者 Shu-Mei Ding Jia-Bao Ding zi-hao song Chao Zhang Zhen Ge Xue Liu Rui-Zheng Zhao Feng-Chao Li 《Nano Materials Science》 EI CAS CSCD 2023年第4期421-428,共8页
2D MXenes are highly attractive for fabricating high-precision gas sensors operated at room temperature(RT)due to their high surface-to-volume ratio.However,the limited selectivity and low sensitivity are still long-s... 2D MXenes are highly attractive for fabricating high-precision gas sensors operated at room temperature(RT)due to their high surface-to-volume ratio.However,the limited selectivity and low sensitivity are still long-standing challenges for their further applications.Herein,the self-assembly of 0D-2D heterostructure for highly sensitive NO_(2) detection was achieved by integrating ZnO nanoparticles on Ti_(3)C_(2)Tx MXene-derived TiO_(2) nanosheets(designated as ZnO@MTiO_(2)).ZnO nanoparticles can not only act as spacers to prevent the restacking of MTiO_(2) nanosheets and ensure effective transfer for gas molecules,but also enhance the sensitivity of the sensor the through trapping effect on electrons.Meanwhile,MTiO_(2) nanosheets facilitate gas diffusion for rapid sensor response.Benefiting from the synergistic effect of individual components,the ZnO@MTiO_(2)0D-2D heterostructure-based sensors revealed remarkable sensitivity and excellent selectivity to low concentration NO_(2) at RT.This work may facilitate the sensing application of MXene derivative and provide a new avenue for the development of high-performance gas sensors in safety assurance and environmental monitoring. 展开更多
关键词 MXene derivative HETEROSTRUCTURE Gas sensors TiO_(2)ZnO
下载PDF
Integration of a fused silica capillary and in-situ Raman spectroscopy for investigating CO_(2) solubility in n-dodecane at near-critical and supercritical conditions of CO_(2) 被引量:1
2
作者 Jun-Liang Wang zi-hao song +4 位作者 Lin-Jun Li Li-Li Yang Quan-Yuan Wang I-Ming Chou Zhi-Yan Pan 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3124-3133,共10页
To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)... To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data. 展开更多
关键词 CO_(2)solubility N-DODECANE Raman spectroscopy Fused silica capillary IN-SITU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部