An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increa...An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increases nonlinearly with the bias voltage increasing from 1.2×10^-9 A to 3.6×10^-5A. Furthermore, the dark resistance, which is characterized as a function of electric field, does not monotonically decrease with the field but displays several distinct regimes. By eliminating the field-dependent drift velocity, the free-electron density n is extracted from the current, and then the critical field for each region of n(E) characteristic of PCSS is obtained. It must be the electric field that provides the free electron with sufficient energy to activate the carrier in the trapped state via multiple physical mechanisms, such as impurity ionization, fielddependent EL2 capture, and impact ionization of donor centers EL10 and EL2. The critical fields calculated from the activation energy of these physical processes accord well with the experimental results. Moreover, agreement between the fitting curve and experimental data of J(E), further confirms that the dark-state characteristics are related to these field-dependent processes. The effects of voltage on SI-Ga As PCSS may give us an insight into its physical mechanism.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31470822)the Advanced Research Foundation of China(Grant Nos.9140A05030114DZ02068,9140A07030514DZ02101,and 9140A07010715DZ02001)
文摘An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increases nonlinearly with the bias voltage increasing from 1.2×10^-9 A to 3.6×10^-5A. Furthermore, the dark resistance, which is characterized as a function of electric field, does not monotonically decrease with the field but displays several distinct regimes. By eliminating the field-dependent drift velocity, the free-electron density n is extracted from the current, and then the critical field for each region of n(E) characteristic of PCSS is obtained. It must be the electric field that provides the free electron with sufficient energy to activate the carrier in the trapped state via multiple physical mechanisms, such as impurity ionization, fielddependent EL2 capture, and impact ionization of donor centers EL10 and EL2. The critical fields calculated from the activation energy of these physical processes accord well with the experimental results. Moreover, agreement between the fitting curve and experimental data of J(E), further confirms that the dark-state characteristics are related to these field-dependent processes. The effects of voltage on SI-Ga As PCSS may give us an insight into its physical mechanism.