期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
单晶硅表面微纳结构构建及其疏水性能分析(英文) 被引量:1
1
作者 丁雯钰 曹自洋 +2 位作者 汪帮富 蒋全胜 王中旺 《机床与液压》 北大核心 2019年第24期64-68,73,共6页
利用去除晶胞的方式在单晶硅100晶面的表面构建不同结构的光栅微纳结构及方柱阵列微纳结构,同时采用MD数值模拟方法,结合疏水结构模型,建立适用于光栅及方柱阵列微纳结构的结构模型,将理论接触角与仿真测量接触角对比并分析,从微观尺度... 利用去除晶胞的方式在单晶硅100晶面的表面构建不同结构的光栅微纳结构及方柱阵列微纳结构,同时采用MD数值模拟方法,结合疏水结构模型,建立适用于光栅及方柱阵列微纳结构的结构模型,将理论接触角与仿真测量接触角对比并分析,从微观尺度上验证试验结果,得出两种结构参数对表面疏水性能的影响。研究结果表明:在去除一层晶胞的前提下,方柱阵列微纳结构的接触角为131°,其疏水性能更强。而结构参数在Cassie-Baxter模型条件前提下,疏水性能随着疏水结构间的间距宽度增加而增大,随疏水结构宽度增大而减小。 展开更多
关键词 疏水性能 结构参数 微纳结构 分子动力学
下载PDF
Modeling of material deformation behavior in micro-forming under consideration of individual grain heterogeneity 被引量:3
2
作者 Zhen-wu MA Xuan PENG +1 位作者 Chun-ju WANG zi-yang cao 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2994-3005,共12页
This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was... This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material. 展开更多
关键词 MICRO-FORMING size effects inhomogeneous material behavior grain heterogeneity composite modeling
下载PDF
Material flow behavior modeling with consideration of size effects 被引量:1
3
作者 Zhen-Wu Ma zi-yang cao +4 位作者 Jin-Bin Lu Hua Li Yuan-Jing Zhang Wei Liu Zhen Yin 《Rare Metals》 SCIE EI CAS CSCD 2018年第11期995-1002,共8页
Size effects make traditional forming theories infeasible in analyzing the micro-forming process, so it is necessary to develop an accurate material model to describe the material flow behavior with consideration of s... Size effects make traditional forming theories infeasible in analyzing the micro-forming process, so it is necessary to develop an accurate material model to describe the material flow behavior with consideration of size effects. By studying the size effects of the flow behavior of H80 foils experimentally, it is found that the foil flow stress and strain hardening ability reduce significantly with the decrease of foil thickness. The reduction of the proportion of internal grains which own complete grain boundaries is the main cause of size effects of foil flow behavior. Moreover, grain refinement can reduce the size effects on material flow behavior. On these bases, a phenomenological material model has been developed to mathematically describe the material flow behavior with consideration of the effects of geometry size, grain size and strain hardening behavior. The reasonability and accuracy of this new model are verified by comparing the calculation values with experimental results in metal foil tensile and micro-bulk upsetting experiments. These experimental results and the proposed model lay a solid foundation for understanding and further exploring the material flow behavior in the micro-forming process. 展开更多
关键词 Size effects Internal grains Material behavior MODELING
原文传递
Size effects on springback behavior of H80 foils 被引量:1
4
作者 Zhen-Wu Ma zi-yang cao +3 位作者 Jin-Bin Lu Yuan-Jing Zhang Wei Liu Zhen Yin 《Rare Metals》 SCIE EI CAS CSCD 2018年第12期1082-1090,共9页
Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which ... Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which divides the change trend of springback amount of foils into two opposite parts. In order to reveal the reason for size effects on the springback behavior of H80 foils, the method of hardness increment characterization was applied to describe the deformation distribution of foils. The competition between strengthening effect of geometrically necessary dislocations and weakening effect of surface grains determines the change trend of springback amount with foil thickness. When the thickness of foils is large, the weakening effects dominate the material behavior, resulting in that the springback amount decreases with the decrease in foil thickness. However, when the foil thickness is small, the strengthening effects dominate the springback tendency, leading to a sharp increase in the springback amount. Furthermore, the deformation distribution is disturbed due to the enhanced effects of individual grain heterogeneity with the decrease in the thickness of foils, leading to the large scatter of springback angle after unloading. 展开更多
关键词 Foil bending Springback behavior Size effects Hardness increment characterization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部