The Antarctic Continent has become the largest natural preservatory of meteorites in the world because of its unique geographical position and climatic conditions. Mt. Grove is located in the inland area of the Antarc...The Antarctic Continent has become the largest natural preservatory of meteorites in the world because of its unique geographical position and climatic conditions. Mt. Grove is located in the inland area of the Antarctic Continent where the conditions are favorable for the preservation of meteorites. During China's 15th, 16th and 19th Antarctic Scientific Explorations a large number of meteorites were recovered in the Mt. Grove region. Especially during the 19th Exploration in 2002/03 a total of 4448 meteorites were recovered, which at one stroke put China among countries that have recovered most numbers of meteorites. Here, we report mainly the results of microscope and electron microprobe studies of 28 meteorites recovered during the 16th Exploration. The meteorites are chemically classified based on their mean Fa contents of olivine, mean Fs contents of low-Ca pyroxene and abundances of Fe-Ni metal. We also give a brief account of the meteorite recovery during the three Explorations and of some preliminary classification results of the Antarctic meteorites.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The Antarctic Continent has become the largest natural preservatory of meteorites in the world because of its unique geographical position and climatic conditions. Mt. Grove is located in the inland area of the Antarctic Continent where the conditions are favorable for the preservation of meteorites. During China's 15th, 16th and 19th Antarctic Scientific Explorations a large number of meteorites were recovered in the Mt. Grove region. Especially during the 19th Exploration in 2002/03 a total of 4448 meteorites were recovered, which at one stroke put China among countries that have recovered most numbers of meteorites. Here, we report mainly the results of microscope and electron microprobe studies of 28 meteorites recovered during the 16th Exploration. The meteorites are chemically classified based on their mean Fa contents of olivine, mean Fs contents of low-Ca pyroxene and abundances of Fe-Ni metal. We also give a brief account of the meteorite recovery during the three Explorations and of some preliminary classification results of the Antarctic meteorites.