In this paper we discuss three important kinds of Markov chains used in Web search algorithms-the maximal irreducible Markov chain, the miuimal irreducible Markov chain and the middle irreducible Markov chain, We disc...In this paper we discuss three important kinds of Markov chains used in Web search algorithms-the maximal irreducible Markov chain, the miuimal irreducible Markov chain and the middle irreducible Markov chain, We discuss the stationary distributions, the convergence rates and the Maclaurin series of the stationary distributions of the three kinds of Markov chains. Among other things, our results show that the maximal and minimal Markov chains have the same stationary distribution and that the stationary distribution of the middle Markov chain reflects the real Web structure more objectively. Our results also prove that the maximal and middle Markov chains have the same convergence rate and that the maximal Markov chain converges faster than the minimal Markov chain when the damping factor α 〉1/√2.展开更多
基金Supported by the National Natural Science Foundation of China (No.10371034).Acknowledgements. We thank Zhi-Ming Ma for his valuable suggestion and instruction. We thank Guo-Lie Lan for his discussion.
文摘In this paper we discuss three important kinds of Markov chains used in Web search algorithms-the maximal irreducible Markov chain, the miuimal irreducible Markov chain and the middle irreducible Markov chain, We discuss the stationary distributions, the convergence rates and the Maclaurin series of the stationary distributions of the three kinds of Markov chains. Among other things, our results show that the maximal and minimal Markov chains have the same stationary distribution and that the stationary distribution of the middle Markov chain reflects the real Web structure more objectively. Our results also prove that the maximal and middle Markov chains have the same convergence rate and that the maximal Markov chain converges faster than the minimal Markov chain when the damping factor α 〉1/√2.