Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils a...Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.展开更多
According to the boot process of modern computer systems,whoever boots first will gain control first.Taking advantage of this feature,a malicious code called bootkit can hijack the control before the OS bootloader and...According to the boot process of modern computer systems,whoever boots first will gain control first.Taking advantage of this feature,a malicious code called bootkit can hijack the control before the OS bootloader and bypass security mechanisms in boot process.That makes bootkits difficult to detect or clean up thoroughly.With the improvement of security mechanisms and the emergence of UEFI,the attack and defense techniques for bootkits have constantly been evolving.We first introduce two boot modes of modern computer systems and present an attack model of bootkits by some sophistical samples.Then we discuss some classic attack techniques used by bootkits from their initial appearance to the present on two axes,including boot mode axis and attack phase axis.Next,we evaluate the race to the bottom of the system and the evolution process between bootkits and security mechanisms.At last,we present the possible future direction for bootkits in the context of continuous improvement of OS and firmware security mechanisms.展开更多
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars...The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars by using the extensive observationsmade by the lmaging Ultraviolet Spectrograph on board the recent Mars Atmosphere and Volatle Evolution spacecraft.Strong solar cycleand solar zenith angle variations in peak emission intensity and altitude were revealed by the data:(1)Both the peak intensity and altitude increase with increasing solar activity,and(2)the peak intensity decreases,whereas the peak altitude increases,with increasingsolar zenith angle.These observations can be favorably interpreted by the solar-driven scenario combined with the fact that photoionization and photoelectron impact ionization are the two most important processes responsible for the production of excited-state cotand consequently the intensity of CO2^+;UVDemission.Despite this,we propose that an extra driver,presumably related to thecomplicated variation in the background atmosphere,such as the occurrence of globaldust storms is required to fuly interpret theobservations.In general,our analysis suggests that the CO2^+;UVD emission is a useful diagnostic of the variability of the dayside Martianatmosphere under the influences of both internal and external drivers.展开更多
基金supported jointly by the National Natural Science Foundation of China(4132501041571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.
基金supported by NSFC under Grant 62172308,Grant U1626107,Grant 61972297 and Grant 62172144。
文摘According to the boot process of modern computer systems,whoever boots first will gain control first.Taking advantage of this feature,a malicious code called bootkit can hijack the control before the OS bootloader and bypass security mechanisms in boot process.That makes bootkits difficult to detect or clean up thoroughly.With the improvement of security mechanisms and the emergence of UEFI,the attack and defense techniques for bootkits have constantly been evolving.We first introduce two boot modes of modern computer systems and present an attack model of bootkits by some sophistical samples.Then we discuss some classic attack techniques used by bootkits from their initial appearance to the present on two axes,including boot mode axis and attack phase axis.Next,we evaluate the race to the bottom of the system and the evolution process between bootkits and security mechanisms.At last,we present the possible future direction for bootkits in the context of continuous improvement of OS and firmware security mechanisms.
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
基金This work is supported by the B-type Strategic Priority Program(no.XDB41000000)the Chinese Academy of Sciences and the pre-research project on Civil Aerospace Technologies(no.D020105)the China National Space Administration.The authors also acknowledge support from the National Science Foundation of China(NSFC)through grants 41525015 and 41774186.The data used in this work are publicly available at the MAVEN Science Data Center(http://lasp.colorado.edu/maven/sdc/public/).
文摘The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars by using the extensive observationsmade by the lmaging Ultraviolet Spectrograph on board the recent Mars Atmosphere and Volatle Evolution spacecraft.Strong solar cycleand solar zenith angle variations in peak emission intensity and altitude were revealed by the data:(1)Both the peak intensity and altitude increase with increasing solar activity,and(2)the peak intensity decreases,whereas the peak altitude increases,with increasingsolar zenith angle.These observations can be favorably interpreted by the solar-driven scenario combined with the fact that photoionization and photoelectron impact ionization are the two most important processes responsible for the production of excited-state cotand consequently the intensity of CO2^+;UVDemission.Despite this,we propose that an extra driver,presumably related to thecomplicated variation in the background atmosphere,such as the occurrence of globaldust storms is required to fuly interpret theobservations.In general,our analysis suggests that the CO2^+;UVD emission is a useful diagnostic of the variability of the dayside Martianatmosphere under the influences of both internal and external drivers.