期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Unveiling the mechanisms of Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)in enhancing anaerobic digestion of waste activated sludge
1
作者 Boaiqi Zhang ziwen zhao +4 位作者 RuiMa Nan Chen Zhe Kong Zhongfang Lei Zhenya Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期200-211,共12页
Anaerobic digestion(AD)of waste activated sludge(WAS)is usually limited by the low generation efficiency of methane.Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)have been reported to effectively enhanced the digestion of W... Anaerobic digestion(AD)of waste activated sludge(WAS)is usually limited by the low generation efficiency of methane.Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)have been reported to effectively enhanced the digestion of WAS,but its role in promoting anaerobic sludge digestion remains unclear.In present study,the effects of CTS-Fe on the hydrolysis and methanogenesis stages of WAS anaerobic digestion were investigated.The addition of CTSFe increased methane production potential by 8%-23%under the tested conditions with the addition of 5-20 g/L CTS-Fe.Besides,the results demonstrate that the addition of CTS-Fe could effectively promote the hydrolysis of WAS,evidenced by lower protein or polysaccharides concentration,higher soluble organic carbon in rector adding CTS-Fe,as well as the increased activity of extracellular hydrolase with higher CTS-Fe concentration.Meanwhile,the enrichment of Clostridia abundance(iron-reducing bacteria(IRBs))was observed in CTS-Fe adding reactor(8.9%-13.8%),which was higher than that in the control reactor(7.9%).The observation further suggesting the acceleration of hydrolysis through dissimilatory iron reduction(DIR)process,thus providing abundant substrates for methanogenesis.However,the presence of CTS-Fe was inhibited the acetoclastic and hydrogenotrophic methanogenesis process,which could be ascribed to the Fe(Ⅲ)act as electron acceptor coupled to methane for anaerobic oxidation.Furthermore,coenzyme F420 activity in the CTS-Fe added reactor was 34.9% lower than in the blank,also abundance of microorganisms involved in hydrogenotrophic methanogenesis was decreased.Results from this study could provide theoretical support for the practical applications of CTS-Fe. 展开更多
关键词 Chitosan-Fe(Ⅲ)composite METHANOGENESIS Dissimilatory iron reduction Enzyme activity Microbial community structure
原文传递
Low H_(2)O_(2)consumption Fenton-like catalysts for pollutant cleavage based on the construction of a dual reaction center
2
作者 Weixiang Liao ziwen zhao +2 位作者 Lai Lyu Chun Hu Fan Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第11期107-116,共10页
High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water.To solve this problem,we designed a novel Fenton-like catalyst(Cu-PAN3)... High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water.To solve this problem,we designed a novel Fenton-like catalyst(Cu-PAN3)by coprecipitation and carbon thermal reduction.The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H_(2)O_(2)consumption.The experimental results indicate that the dual reaction centers(DRCs)are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon,which form electron-poor/rich centers on the catalyst surface.H_(2)O_(2)is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation.Meanwhile,pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst,which inhibits the ineffective decomposition of H_(2)O_(2)at the electron-poor centers.This therefore significantly reduces the consumption of H_(2)O_(2)and reduces energy consumption. 展开更多
关键词 Water purification FENTON-LIKE Dual reaction centers Graphene-like carbon Low H_(2)O_(2)consumption
原文传递
Tailoring microstructure and electrical transportation through tensile stress in Bi_(2)Te_(3) thermoelectric fibers 被引量:1
3
作者 Min Sun Guowu Tang +7 位作者 Bowen Huang Zhongjia Chen Yu-Jun zhao Hanfu Wang ziwen zhao Dongdan Chen Qi Qian Zhongmin Yang 《Journal of Materiomics》 SCIE EI 2020年第3期467-475,共9页
Bismuth telluride(Bi_(2)Te_(3))has attracted much attention in the field of thermoelectrics since it is one kind of commercial room-temperature thermoelectric material.Herein three kinds of Bi_(2)Te_(3) thermoelectric... Bismuth telluride(Bi_(2)Te_(3))has attracted much attention in the field of thermoelectrics since it is one kind of commercial room-temperature thermoelectric material.Herein three kinds of Bi_(2)Te_(3) thermoelectric fibers with internal tensile stress are fabricated utilizing an optical fiber template method.The effects of internal stress on the microstructure and the electrical transportation of Bi_(2)Te_(3) thermoelectric fibers are investigated.The Bi_(2)Te_(3) cores in the fibers are highly crystalline and possess a tensile nanosheet structure with preferential orientation as evidenced by X-ray diffraction and Raman studies.Tensile stress can enhance electrical properties of the fibers.And a paper cup generator covered with 20 pieces of optimized fibers provides a μW-level output power.It is inferred that tensile stress tuning can be an effective tool for the material optimization of thermoelectric performance. 展开更多
关键词 Bi_(2)Te_(3) Thermoelectric fiber Tensile stress Electrical transportation
原文传递
Effects of nitrogen addition on plant-soil-microbe stoichio-metry characteristics of different functional group species in Bothriochloa ischemum community
4
作者 ziwen zhao YanLi Qin +3 位作者 Yang Wu WenJing Chen Sha Xue GuoBin Liu 《Soil Ecology Letters》 CAS 2022年第4期362-375,共14页
Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important compo... Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important component of terrestrial ecosystems and play a key role in maintaining terrestrial ecosystem balance.Therefore,it is critical to understand the effects of nitrogen addition on grassland ecosystems.We conducted gradientN addition experiments(0,3,6,and 9 g N m^(-2)2 y^(-1))for threeyears ingrassland communities with similar site conditions.We utilized four typical herbaceous plants,including the dominant species Bothriochloa ischemum(B.ischemum)and companion species Stipa bungeana(S.bungeana),Artemisia gmelinii(A.gmelinii),and Cleistogenes squarrosa(C.squarrosa),to explore how different plant-soil-microbe systems respond to N addition.Stoichiometric homeostasis analysis demonstrated that both plants and microbes were strictly homeostatic.However,the companion species were found to be more susceptible to P dominant species.Furthermore,aggravated overlap in stoichiometric niches between plant species were observed at the N6 and N9 levels.Vector analysis indicated that the vector angle was>45°regardlessof plant species and N levels,suggesting that there was a strong Plimitation in the rhizosphere microbial community.Variation partitioning analysis revealed that the Composite roots exhibited a greater effect(explaining 34.7% of the variation)on the rhizosphere microbes than on the Gramineae,indicating that there may be more intense nutrient competition in its rhizosphere.Ingeneral,the effects of N addition on species were different a cross functional groups,with a significant positive effect on the Gramineae(B.ischemum,S.bungeana,and C.squarrosa)and a significant negative effecton the Compositae(A.gmelinii),which should be fully considered in the future ecological management and restoration. 展开更多
关键词 N addition Ecological stoichiometry Stoichiometric homeostasis Nutrient limitation Stoichiometric niche Plant-soil-microbe system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部