Layered trihalides exhibit distinctive band structures and physical properties due to the sixfold coordinated 3d or 4d transition metal site and partially occupied d orbitals,holding great potential in condensed matte...Layered trihalides exhibit distinctive band structures and physical properties due to the sixfold coordinated 3d or 4d transition metal site and partially occupied d orbitals,holding great potential in condensed matter physics and advanced electronic applications.Prior research focused on trihalides with highly symmetric honeycomb-like structures,such as CrI3 andα-RuCl_(3),while the role of crystal anisotropy in trihalides remains elusive.In particular,the trihalide MoCl_(3) manifests strong in-plane crystal anisotropy with the largest difference in Mo–Mo interatomic distances.Research on such material is imperative to address the lack of investigations on the effect of anisotropy on the properties of trihalides.Herein,we demonstrated the anisotropy of MoCl_(3) through polarized Raman spectroscopy and further tuned the phonon frequency via strain engineering.We showed the Raman intensity exhibits twofold symmetry under parallel configuration and fourfold symmetry under perpendicular configuration with changing the polarization angle of incident light.Furthermore,we found that the phonon frequencies of MoCl_(3) decrease gradually and linearly with applying uniaxial tensile strain along the axis of symmetry in the MoCl_(3) crystal,while those frequencies increase with uniaxial tensile strain applied perpendicularly.Our results shed light on the manipulation of anisotropic light-matter interactions via strain engineering,and lay a foundation for further exploration of the anisotropy of trihalides and the modulation of their electronic,optical,and magnetic properties.展开更多
Li-rich layered oxide materials have attracted increasing attention because of their high specific capacity(>250 mAh g^(-1)). However, these materials typically suffer from poor cycling stability and low rate perfo...Li-rich layered oxide materials have attracted increasing attention because of their high specific capacity(>250 mAh g^(-1)). However, these materials typically suffer from poor cycling stability and low rate performance. Herein, we propose a facile and novel metal-organic-framework(MOF) shell-derived surface modification strategy to construct NiCo nanodots decorated(~5 nm in diameter) carbon-confined Li_(1.2)Mn_(0.54) Ni_(0.13)Co_(0.13)O_2 nanoparticles(LLO@C&NiCo). The MOF shell is firstly formed on the surface of as-prepared Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 nanoparticles via low-pressure vapor superassembly and then is in situ converted to the NiCo nanodots decorated carbon shell after subsequent controlled pyrolysis.The obtained LLO@C&NiCo cathode exhibits enhanced cycling and rate capability with a capacity retention of 95% after 100 cycles at 0.4 C and a high capacity of 159 mAh g^(-1) at 5 C, respectively, compared with those of LLO(75% and 105 mAh g^(-1)). The electrochemical impedance spectroscopy and selected area electron diffraction analyses after cycling demonstrate that the thin C&NiCo shell can endow LLO with high electronic conductivity and structural stability, indicating the undesired formation of the spinel phase initiated from the particle surface is efficiently suppressed. Therefore, this presented strategy may open a new avenue on the design of high-performance electrode materials for energy storage.展开更多
The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BB...The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BBLN)solid polymer electrolyte was created by manipulating the shape of the incorporated nanoparticles.Our designed BBLN solid polymer electrolyte was created by incorporating spherical core-shell(UIO-66@67)fillers into polymer electrolyte,which is significantly different from traditional polymer-based composite electrolytes.UIO-66@67 spherical nanoparticles are highly favorable to eliminating polymer electrolyte stress and deformation during solidification,indicating a great potential for fabricating highly uniform BBLN solid polymer electrolytes with a substantial number of continuous convolutions.Furthermore,spherical nanoparticles can significantly reduce the crystalline structure of polymer electrolytes,improving polymer chain segmental movement and providing continuous pathways for rapid ion transfer.As a result,BBLN solid polymer electrolyte shows excellent ionic conductivity(9.2×10^(−4)S cm^(−1)),a high lithium transference number(0.74),and outstanding cycle stability against lithium electrodes over 6500 h at room temperature.The concept of biomimetic brain-like nanostructures in this work demonstrates a novel strategy to enhance ion transport in polymerbased electrolytes for solid-state batteries.展开更多
Main observation and conclusion The cathode material plays a crucial role in the performances of aqueous zinc-ion batteries(ZIBs).Herein,we report an ammonium vanadate(NH_(4)V_(4)O_(10)∙0.28H_(2)O,NHVO)aqueous ZIB cat...Main observation and conclusion The cathode material plays a crucial role in the performances of aqueous zinc-ion batteries(ZIBs).Herein,we report an ammonium vanadate(NH_(4)V_(4)O_(10)∙0.28H_(2)O,NHVO)aqueous ZIB cathode material.The obtained NHVO microflowers manifest high discharge capacity(410 mA·h∙g^(-1) at 0.2 A∙g^(-1)).展开更多
In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batte...In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs).Impressively,the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs.This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.展开更多
Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of mul...Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube- in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn204 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of -565 mAh-g-1 at a high rate of 2 A.g-~, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.展开更多
Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, h...Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, high conductivity and low cost. To maximize their catalytic efficiency, rational design of efficient electrocatalysts with rich exposed active sites is highly desired. Besides, due to the complexity of nitrogen species, the identification of active nitrogen sites for ORR remains challenging. Herein, we develop a facile and scalable template method to construct high-concentration nitrogen-doped carbon hollow frameworks(NC), and reveal the effect of different nitrogen species on theirORRactivity on basis of experimental analysis and theoretical calculations. The formation mechanism is clearly revealed, including low-pressure vapor superassembly of thin zeolitic imidazolate framework(ZIF-8) shell on ZnO templates,in situ carbonization and template removal. The obtained NC-800 displays better ORR activity compared with other NC-700 and NC-900 samples. Our results indicate that the superior ORR activity of NC-800 is mainly attributed to its content balance of three nitrogen species. The graphitic N and pyrrolic N sites are responsible for lowering the working function, while the pyridinic N and pyrrolic N sites as possible active sites are beneficial for increasing the density of states.展开更多
Niobium pentoxide;Ion and electron transport;Mass loading;Areal capacity;Lithium-ion batteryNiobium pentoxide(Nb2 O5) has attracted great attention as an anode for lithium-ion battery, which is attributed to the high-...Niobium pentoxide;Ion and electron transport;Mass loading;Areal capacity;Lithium-ion batteryNiobium pentoxide(Nb2 O5) has attracted great attention as an anode for lithium-ion battery, which is attributed to the high-rate and good stability performances. In this work, TT-, T-, M-, and H-Nb2 O5 microspheres were synthesized by a facile one-step thermal oxidation method. Ion and electron transport properties of Nb2 O5 with different phases were investigated by both electrochemical analyses and density functional theoretical calculations. Without nanostructuring and carbon modification, the tetragonal Nb2 O5(M-Nb2 O5) displays preferable rate capability(121 m Ah g^-1 at 5 A g^-1), enhanced reversible capacity(163 m Ah g^-1 at 0.2 A g^-1) and better cycling stability(82.3% capacity retention after 1000 cycles)when compared with TT-, T-, and H-Nb2 O5. Electrochemical analyses further reveal the diffusioncontrolled Li+intercalation kinetics and in-situ X-ray diffraction analysis indicates superior structural stability upon Li+intercalation/deintercalation. Benefiting from the intrinsic fast ion/electron transport, a high areal capacity of 2.24 m Ah cm^-2 is obtained even at an ultrahigh mass loading of 22.51 mg cm^-2.This work can promote the development of Nb2 O5 materials for high areal capacity and stable lithium storage towards practical applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.92365203,52072168,51861145201,and 523B1010)the National Key Basic Research Program of the Ministry of Science and Technology of China(No.2021YFA1202901)the Natural Science Foundation of Jiangsu Province(No.BK20200341).
文摘Layered trihalides exhibit distinctive band structures and physical properties due to the sixfold coordinated 3d or 4d transition metal site and partially occupied d orbitals,holding great potential in condensed matter physics and advanced electronic applications.Prior research focused on trihalides with highly symmetric honeycomb-like structures,such as CrI3 andα-RuCl_(3),while the role of crystal anisotropy in trihalides remains elusive.In particular,the trihalide MoCl_(3) manifests strong in-plane crystal anisotropy with the largest difference in Mo–Mo interatomic distances.Research on such material is imperative to address the lack of investigations on the effect of anisotropy on the properties of trihalides.Herein,we demonstrated the anisotropy of MoCl_(3) through polarized Raman spectroscopy and further tuned the phonon frequency via strain engineering.We showed the Raman intensity exhibits twofold symmetry under parallel configuration and fourfold symmetry under perpendicular configuration with changing the polarization angle of incident light.Furthermore,we found that the phonon frequencies of MoCl_(3) decrease gradually and linearly with applying uniaxial tensile strain along the axis of symmetry in the MoCl_(3) crystal,while those frequencies increase with uniaxial tensile strain applied perpendicularly.Our results shed light on the manipulation of anisotropic light-matter interactions via strain engineering,and lay a foundation for further exploration of the anisotropy of trihalides and the modulation of their electronic,optical,and magnetic properties.
基金financially supported by Shenzhen Fundamental Research Program(JCYJ20190809114409397)the Fundamental Research Funds for the Central Universities(WUT:2020Ⅲ029 and 2020IVA100)。
基金supported by the National Key Research and Development Program of China(2016YFA0202603)the National Basic Research Program of China(2013CB934103)+4 种基金the Programme of Introducing Talents of Discipline to Universities(B17034)the National Natural Science Foundation of China(51521001)the National Natural Science Fund for Distinguished Young Scholars(51425204)the Fundamental Research Funds for the Central Universities(WUT:2016III001 and 2016-YB-004)financial support from China Scholarship Council(201606955096)
文摘Li-rich layered oxide materials have attracted increasing attention because of their high specific capacity(>250 mAh g^(-1)). However, these materials typically suffer from poor cycling stability and low rate performance. Herein, we propose a facile and novel metal-organic-framework(MOF) shell-derived surface modification strategy to construct NiCo nanodots decorated(~5 nm in diameter) carbon-confined Li_(1.2)Mn_(0.54) Ni_(0.13)Co_(0.13)O_2 nanoparticles(LLO@C&NiCo). The MOF shell is firstly formed on the surface of as-prepared Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 nanoparticles via low-pressure vapor superassembly and then is in situ converted to the NiCo nanodots decorated carbon shell after subsequent controlled pyrolysis.The obtained LLO@C&NiCo cathode exhibits enhanced cycling and rate capability with a capacity retention of 95% after 100 cycles at 0.4 C and a high capacity of 159 mAh g^(-1) at 5 C, respectively, compared with those of LLO(75% and 105 mAh g^(-1)). The electrochemical impedance spectroscopy and selected area electron diffraction analyses after cycling demonstrate that the thin C&NiCo shell can endow LLO with high electronic conductivity and structural stability, indicating the undesired formation of the spinel phase initiated from the particle surface is efficiently suppressed. Therefore, this presented strategy may open a new avenue on the design of high-performance electrode materials for energy storage.
基金supported by the National Natural Science Foundation of China(51802239 and 52127816)the National Key Research and Development Program of China(2020YFA0715000)+2 种基金the Key Research and Development Program of Hubei Province(2021BAA070)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020Ⅲ011GX,2020ⅣB057,2019ⅣB054 and 2019Ⅲ062JL)。
文摘The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BBLN)solid polymer electrolyte was created by manipulating the shape of the incorporated nanoparticles.Our designed BBLN solid polymer electrolyte was created by incorporating spherical core-shell(UIO-66@67)fillers into polymer electrolyte,which is significantly different from traditional polymer-based composite electrolytes.UIO-66@67 spherical nanoparticles are highly favorable to eliminating polymer electrolyte stress and deformation during solidification,indicating a great potential for fabricating highly uniform BBLN solid polymer electrolytes with a substantial number of continuous convolutions.Furthermore,spherical nanoparticles can significantly reduce the crystalline structure of polymer electrolytes,improving polymer chain segmental movement and providing continuous pathways for rapid ion transfer.As a result,BBLN solid polymer electrolyte shows excellent ionic conductivity(9.2×10^(−4)S cm^(−1)),a high lithium transference number(0.74),and outstanding cycle stability against lithium electrodes over 6500 h at room temperature.The concept of biomimetic brain-like nanostructures in this work demonstrates a novel strategy to enhance ion transport in polymerbased electrolytes for solid-state batteries.
基金This work was supported by the National Natural Science Foundation of China(21905218)the National Key Research and Development Program of China(2018YFB0104200)+2 种基金the China Postdoctoral Science Foundation(2020M682500,2020M682502)the Fundamental Research Funds for the Central Universities(WUT:203114001,2020IVA098)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003).
文摘Main observation and conclusion The cathode material plays a crucial role in the performances of aqueous zinc-ion batteries(ZIBs).Herein,we report an ammonium vanadate(NH_(4)V_(4)O_(10)∙0.28H_(2)O,NHVO)aqueous ZIB cathode material.The obtained NHVO microflowers manifest high discharge capacity(410 mA·h∙g^(-1) at 0.2 A∙g^(-1)).
基金the National Natural Science Foundation of China (Nos.51425204,51521001,and 51602239)the National Key R&D Program of China (No.2016YFA0202603)+2 种基金the Program of Introducing Talents of Discipline to Universities (No.B17034)the Yellow Crane Talent (Science & Technology) Program of Wuhan Citythe International Science & Technology Cooperation Program of China (No.2013DFA50840).
文摘In this work,homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect.It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs).Impressively,the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs.This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.
基金This work was supported by the National Basic Research Program of China (Nos. 2013CB934103 and 2012CB933003), the National Natural Science Foundation of China (Nos. 51521001 and 51272197), the National Science Fund for Distinguished Young Scholars (No. 51425204), the Hubei Province Natural Science Fund for Distinguished Young Scholars (No. 2014CFA035), and the Fundamental Research Funds for the Central Universities (Nos. 2015-III-032, 2016-YB-004, and 2015-KF-3). We thank Prof. D~ Y. Zhao of Fudan University and Prof. J. Liu of Pacific Northwest National Laboratory for useful discussions and assistance with the manuscript.
文摘Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube- in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn204 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of -565 mAh-g-1 at a high rate of 2 A.g-~, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.
基金supported by the National Natural Science Foundation of China (51832004 and 51521001)the National Key Research and Development Program of China (2016YFA0202603)+2 种基金the Natural Science Foundation of Hubei Province (2019CFA001)the Programme of Introducing Talents of Discipline to Universities (B17034)the Yellow Crane Talent (Science & Technology) Program of Wuhan City。
文摘Nitrogen-doped carbon materials as promising oxygen reduction reaction(ORR) electrocatalysts attract great interest in fuel cells and metal-air batteries because of their relatively high activity, high surface area, high conductivity and low cost. To maximize their catalytic efficiency, rational design of efficient electrocatalysts with rich exposed active sites is highly desired. Besides, due to the complexity of nitrogen species, the identification of active nitrogen sites for ORR remains challenging. Herein, we develop a facile and scalable template method to construct high-concentration nitrogen-doped carbon hollow frameworks(NC), and reveal the effect of different nitrogen species on theirORRactivity on basis of experimental analysis and theoretical calculations. The formation mechanism is clearly revealed, including low-pressure vapor superassembly of thin zeolitic imidazolate framework(ZIF-8) shell on ZnO templates,in situ carbonization and template removal. The obtained NC-800 displays better ORR activity compared with other NC-700 and NC-900 samples. Our results indicate that the superior ORR activity of NC-800 is mainly attributed to its content balance of three nitrogen species. The graphitic N and pyrrolic N sites are responsible for lowering the working function, while the pyridinic N and pyrrolic N sites as possible active sites are beneficial for increasing the density of states.
基金This work was supported by the National Natural Science Foundation of China(21805219,51521001)the National Key Research and Development Program of China(2016YFA0202603)+1 种基金the Program of Introducing Talents of Discipline to Universities(B17034)the Yellow Crane Talent(Science&Technology)Program of Wuhan City.
文摘Niobium pentoxide;Ion and electron transport;Mass loading;Areal capacity;Lithium-ion batteryNiobium pentoxide(Nb2 O5) has attracted great attention as an anode for lithium-ion battery, which is attributed to the high-rate and good stability performances. In this work, TT-, T-, M-, and H-Nb2 O5 microspheres were synthesized by a facile one-step thermal oxidation method. Ion and electron transport properties of Nb2 O5 with different phases were investigated by both electrochemical analyses and density functional theoretical calculations. Without nanostructuring and carbon modification, the tetragonal Nb2 O5(M-Nb2 O5) displays preferable rate capability(121 m Ah g^-1 at 5 A g^-1), enhanced reversible capacity(163 m Ah g^-1 at 0.2 A g^-1) and better cycling stability(82.3% capacity retention after 1000 cycles)when compared with TT-, T-, and H-Nb2 O5. Electrochemical analyses further reveal the diffusioncontrolled Li+intercalation kinetics and in-situ X-ray diffraction analysis indicates superior structural stability upon Li+intercalation/deintercalation. Benefiting from the intrinsic fast ion/electron transport, a high areal capacity of 2.24 m Ah cm^-2 is obtained even at an ultrahigh mass loading of 22.51 mg cm^-2.This work can promote the development of Nb2 O5 materials for high areal capacity and stable lithium storage towards practical applications.