期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure 被引量:3
1
作者 zibao jiao Wenjun Huyan +7 位作者 Feng Yang Junru Yao Ruiyang Tan Ping Chen Xuewei Tao Zhengjun Yao Jintang Zhou Peijiang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期33-47,共15页
Realizing ultra-wideband absorption,desirable attenuation capability at high temperature and mechanical requirements for real-life applications remains a great challenge for microwave absorbing materials.Herein,we hav... Realizing ultra-wideband absorption,desirable attenuation capability at high temperature and mechanical requirements for real-life applications remains a great challenge for microwave absorbing materials.Herein,we have constructed a porous carbon fiber/polymethacrylimide(CP)structure for acquiring promising microwave absorption performance and withstanding both elevated temperature and high strength in a low density.Given the ability of porous structure to induce desirable impedance matching and multiple reflection,the absorption bandwidth of CP composite can reach ultra-wideband absorption of 14 GHz at room temperature and even cover the whole X-band at 473 K.Additionally,the presence of imide ring group in polymethacrylimide and hard bubble wall endows the composite with excellent heat and compressive behaviors.Besides,the lightweight of the CP composite with a density of only 110 mg cm^(−3) coupled with high compressive strength of 1.05 MPa even at 453 K also satisfies the requirements in engineering applica-tions.Compared with soft and compressible aerogel materials,we envision that the rigid porous foam absorbing material is particularly suitable for environmental extremes. 展开更多
关键词 Porous structure EM wave absorption Mechanism
下载PDF
Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling 被引量:5
2
作者 zibao jiao Wenjun Huyan +3 位作者 Junru Yao Zhengjun Yao Jintang Zhou Peijiang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期166-174,共9页
With the aim to obtain enhanced absorbing performance at small thickness and low filling,a robust strat-egy to fabricate zinc oxide(ZnO)modified carbon fiber(CF)structures have been successfully prepared by using low ... With the aim to obtain enhanced absorbing performance at small thickness and low filling,a robust strat-egy to fabricate zinc oxide(ZnO)modified carbon fiber(CF)structures have been successfully prepared by using low temperature hydrothermal method.Due to the multi-interface polarization caused by the high specific surface area of the complex heterostructures and the improvement of impedance matching,the composites show excellent electromagnetic wave absorption properties.Under the condition of low filling content(20 wt%)and ultra-thin thickness(1.5 mm),the excellent absorption performance of minimal reflection loss of−34.4 dB and an effective absorption bandwidth(RL≤−10 dB)of 4.94 GHz is achieved.In addition,the effective absorption bandwidth covers the whole 2-18 GHz band with the increase of thickness from 0.5 to 10 mm.This work provides an innovative method for designing the matching layer of carbon-based absorbing materials,and ZnO@CF heterostructure is expected to become a potential absorbing material. 展开更多
关键词 Heterogeneous structure Carbon fiber Impedance matching characteristic Electromagnetic wave absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部