期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode 被引量:5
1
作者 Meng Li Na Feng +6 位作者 Mengmeng Liu zifeng cong Jiangman Sun Chunhua Du Quanbin Liu Xiong Pu Weiguo Hu 《Science Bulletin》 SCIE EI CSCD 2018年第15期982-989,共8页
Red phosphorus has received remarkable attention as a promising anode material for sodium ion batteries(NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic ... Red phosphorus has received remarkable attention as a promising anode material for sodium ion batteries(NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic low electronic conductivity and large volume variations during sodiation/desodiation process. Here, we design a composite to confine nanosized red phosphorus into the hierarchically porous carbon(HPC) walls by a vaporization-condensation strategy. The mass loading of P in the HPC/P composite is optimized to deliver a reversible specific capacity of 2,202 m Ah/gpbased on the mass of red P(836 m Ah/gcompositebased on the total composite mass), a high capacity retention over 77% after100 cycles, and excellent rate performance of 929 m Ah/gpat 2 C. The hierarchical porous carbon serves as the conductive networks, downsize the red phosphorus to nanoscale, and provide free space to accommodate the large volume expansions. The suppressed mechanical failure of the red phosphorus also enhances the stability of solid-electrolyte interface(SEI) layer, which is confirmed by the microscopy and impedance spectroscopy after the cycling tests. Our studies provide a feasible approach for potentially viable high-capacity NIB anode. 展开更多
关键词 Red phosphorus Hierarchical porous carbon Sodium ion batteries ANODE
原文传递
Ultra-antifreeze,ultra-stretchable,transparent,and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator 被引量:4
2
作者 Xinhuan Dai Yong Long +7 位作者 Bing Jiang Wenbin Guo Wei Sha Jiangwen Wang zifeng cong Jiwei Chen Bingjun Wang Weiguo Hu 《Nano Research》 SCIE EI CSCD 2022年第6期5461-5468,共8页
Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real a... Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics. 展开更多
关键词 triboelectric nanogenerators ANTIFREEZE ultra-stretchable hydrogels strain sensors multi-functional flexible electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部