Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
The inefficiency of ethanol oxidation reaction(EOR)presents a significant obstacle in harnessing renewable biofuels with high energy density into electricity.Despite efforts,most Pt-based catalysts still suffer from d...The inefficiency of ethanol oxidation reaction(EOR)presents a significant obstacle in harnessing renewable biofuels with high energy density into electricity.Despite efforts,most Pt-based catalysts still suffer from drawbacks such as poor activity and susceptibility to CO poisoning,particularly in acidic conditions.Herein,we employed a physical laser-assisted approach to synthetize a PtPd alloy with a 1:1 atomic ratio.This alloy demonstrates remarkable performance in acidic EOR,boasting a high mass activity of 1.86 A·mgPt^(−1)and competitive resistance to poisoning.Combining in situ synchrotron radiation infrared spectroscopy with theoretical calculations,we reveal that the synergic interaction between Pt and Pd enhances both the adsorption of OH*intermediate and the dehydrogenation ability of ethanol.This work will prove the feasibility of synthesizing bimetallic alloys by a physical laser-assisted strategy and promote the development of advanced alloy electrocatalysts.展开更多
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
基金supported by the National Natural Science Foundation of China(Nos.12025505,12105287,22002147,22179125,U21A20317,and 22373001)the National Key Research and Development Program of China(No.2021YFA1600800)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450200)the Fundamental Research Funds for the Central Universities(No.KY2310000097)Xiaomi Young Talents Programsupported by the Supercomputing Center of the USTC.
文摘The inefficiency of ethanol oxidation reaction(EOR)presents a significant obstacle in harnessing renewable biofuels with high energy density into electricity.Despite efforts,most Pt-based catalysts still suffer from drawbacks such as poor activity and susceptibility to CO poisoning,particularly in acidic conditions.Herein,we employed a physical laser-assisted approach to synthetize a PtPd alloy with a 1:1 atomic ratio.This alloy demonstrates remarkable performance in acidic EOR,boasting a high mass activity of 1.86 A·mgPt^(−1)and competitive resistance to poisoning.Combining in situ synchrotron radiation infrared spectroscopy with theoretical calculations,we reveal that the synergic interaction between Pt and Pd enhances both the adsorption of OH*intermediate and the dehydrogenation ability of ethanol.This work will prove the feasibility of synthesizing bimetallic alloys by a physical laser-assisted strategy and promote the development of advanced alloy electrocatalysts.