Despite their excellent environmental stability,low defect density,and high carrier mobility,large-n quasi-two-dimensional halide perovskites(quasi-2DHPs)feature a limited application scope because of the formation of...Despite their excellent environmental stability,low defect density,and high carrier mobility,large-n quasi-two-dimensional halide perovskites(quasi-2DHPs)feature a limited application scope because of the formation of self-assembled multiple quantum wells(QWs)due to the similar thermal stabilities of large-n phases.However,large-n quasi-phase-pure 2DHPs(quasi-PP-2DHPs)can solve this problem perfectly.This review discusses the structures,formation mechanisms,and photoelectronic and physical properties of quasi-PP-2DHPs,summarises the corresponding single crystals,thin films,and heterojunction preparation methods,and presents the related advances.Moreover,we focus on applications of large-n quasi-PP-2DHPs in solar cells,photodetectors,lasers,light-emitting diodes,and field-effect transistors,discuss the challenges and prospects of these emerging photoelectronic materials,and review the potential technological developments in this area.展开更多
Long-term excessive application of nitrogen fertilizer induces secondary salinization of soil,which results in inhibiting plant growth.In addition,soil moisture deficiency also affects plant growth.To investigate the ...Long-term excessive application of nitrogen fertilizer induces secondary salinization of soil,which results in inhibiting plant growth.In addition,soil moisture deficiency also affects plant growth.To investigate the effects of excessive nitrogen fertilizer and soil moisture deficiency on the antioxidant enzyme system,plant water relations analyzed through pressure-volume(P-V)curve,and photosynthetic light response parameters in tomato(Solanum lycopersicum L.Myoko)seedlings,an indoor experiment of about 50 d was conducted using two irrigation water amounts based on field capacity(soil moisture deficiency:50%-80%;adequate water:70%-80%),two nitrogen fertilizer rates(moderate nitrogen;excessive nitrogen fertilizer:0.585 g/pot)and two types of irrigation water(tap water and microbial diluent).The results showed that excessive nitrogen fertilizer(N)and soil moisture deficiency(W)reduced the biomass of tomato seedlings.In comparison to CK(combination of adequate water and tap water quality),microbial dilution(EM)increased plant biomass by 5.2%.Also,the nitrogen application increased chlorophyll relative contents(SPAD).The maximum net photosynthetic rate(Pc)decreased with nitrogen application and increased with EM application and irrigation amount.Excessive nitrogen application increased the plant nitrate reductase activity(NR).The plant NR in the N treatment showed a 13.0%increase compared to CK,and the plant NR in the treatment of nitrogen application with water deficiency(WN)increased 34.0%compared to water deficiency(W).After applying excessive nitrogen,N,EM-N,WN,EM-WN respectively increased the plant nitrate reductase activity by 13.0%,22.9%,34.0%,and 28.6%,compared with the corresponding treatment with moderate nitrogen(i.e.,CK,EM,W and EM-W).In addition,the activities of antioxidant enzymes[superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)]in four treatments of nitrogen application(N,EM-N,WN,EM-WN)also increased significantly.Both soil moisture and nitrogen fertilizer significantly affect the parameters of osmotic adjustment,which is manifested in the reduction of osmotic potential(π_(FT)),and the increase in the osmotic concentration(C_(osm))and concentration difference(ΔC_(osm)).But the decrease in the relative water content of apoplast(ζ_(ap))indicated that water deficiency and excessive nitrogen reduced the water absorption and water retention capacity of tomatoes to a certain extent.In conclusion,excessive nitrogen application and soil moisture deficiency inhibit plant growth significantly in this experiment.Meanwhile,microbial dilution can alleviate excessive nitrogen fertilizer and water stress to some extent,but the effect was not significant.展开更多
基金supported by the National Natural Science Foundation of China(62105292,61935017,and 62175268)Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSY015)+7 种基金Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the Natural Science Foundation of Shaanxi Province(2021GXLH-Z-0 and 2020JZ-02)the Project of Innovative Team of Shaanxi Province(2020TD-001)the China Fundamental Research Funds for the Central Universitiesthe Science and Technology Development Fund,Macao SAR(FDCT-0044/2020/A1,006/2022/ALC)UM’s research fund(MYRG2022-00241-IAPME,MYRG-CRG2022-00009-FHS)the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C)(SGDX2020110309360100)。
文摘Despite their excellent environmental stability,low defect density,and high carrier mobility,large-n quasi-two-dimensional halide perovskites(quasi-2DHPs)feature a limited application scope because of the formation of self-assembled multiple quantum wells(QWs)due to the similar thermal stabilities of large-n phases.However,large-n quasi-phase-pure 2DHPs(quasi-PP-2DHPs)can solve this problem perfectly.This review discusses the structures,formation mechanisms,and photoelectronic and physical properties of quasi-PP-2DHPs,summarises the corresponding single crystals,thin films,and heterojunction preparation methods,and presents the related advances.Moreover,we focus on applications of large-n quasi-PP-2DHPs in solar cells,photodetectors,lasers,light-emitting diodes,and field-effect transistors,discuss the challenges and prospects of these emerging photoelectronic materials,and review the potential technological developments in this area.
基金This work was financially supported by the National Natural Science Foundation of China(51509068)Fundamental Research Funds for the Central Universities(B200202093).
文摘Long-term excessive application of nitrogen fertilizer induces secondary salinization of soil,which results in inhibiting plant growth.In addition,soil moisture deficiency also affects plant growth.To investigate the effects of excessive nitrogen fertilizer and soil moisture deficiency on the antioxidant enzyme system,plant water relations analyzed through pressure-volume(P-V)curve,and photosynthetic light response parameters in tomato(Solanum lycopersicum L.Myoko)seedlings,an indoor experiment of about 50 d was conducted using two irrigation water amounts based on field capacity(soil moisture deficiency:50%-80%;adequate water:70%-80%),two nitrogen fertilizer rates(moderate nitrogen;excessive nitrogen fertilizer:0.585 g/pot)and two types of irrigation water(tap water and microbial diluent).The results showed that excessive nitrogen fertilizer(N)and soil moisture deficiency(W)reduced the biomass of tomato seedlings.In comparison to CK(combination of adequate water and tap water quality),microbial dilution(EM)increased plant biomass by 5.2%.Also,the nitrogen application increased chlorophyll relative contents(SPAD).The maximum net photosynthetic rate(Pc)decreased with nitrogen application and increased with EM application and irrigation amount.Excessive nitrogen application increased the plant nitrate reductase activity(NR).The plant NR in the N treatment showed a 13.0%increase compared to CK,and the plant NR in the treatment of nitrogen application with water deficiency(WN)increased 34.0%compared to water deficiency(W).After applying excessive nitrogen,N,EM-N,WN,EM-WN respectively increased the plant nitrate reductase activity by 13.0%,22.9%,34.0%,and 28.6%,compared with the corresponding treatment with moderate nitrogen(i.e.,CK,EM,W and EM-W).In addition,the activities of antioxidant enzymes[superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)]in four treatments of nitrogen application(N,EM-N,WN,EM-WN)also increased significantly.Both soil moisture and nitrogen fertilizer significantly affect the parameters of osmotic adjustment,which is manifested in the reduction of osmotic potential(π_(FT)),and the increase in the osmotic concentration(C_(osm))and concentration difference(ΔC_(osm)).But the decrease in the relative water content of apoplast(ζ_(ap))indicated that water deficiency and excessive nitrogen reduced the water absorption and water retention capacity of tomatoes to a certain extent.In conclusion,excessive nitrogen application and soil moisture deficiency inhibit plant growth significantly in this experiment.Meanwhile,microbial dilution can alleviate excessive nitrogen fertilizer and water stress to some extent,but the effect was not significant.