期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Low Complexity Digital Pre-Distortion (DPD) for Multi-Band Radio over Fiber Transmission Systems
1
作者 zijian cheng Xiupu Zhang 《Journal of Computer and Communications》 2024年第11期241-262,共22页
Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for m... Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well. 展开更多
关键词 Multidimensional Digital Predistortion (DPD) Memorial Polynomial (MP) Power Amplifier (PA) Radio over Fiber Fronthaul Networks 5G
下载PDF
Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data
2
作者 Haoli Xu Xing Yang +13 位作者 Yihua Hu Daqing Wang Zhenyu Liang Hua Mu Yangyang Wang Liang Shi Haoqi Gao Daoqing Song zijian cheng Zhao Lu Xiaoning Zhao Jun Lu Bingwen Wang Zhiyang Hu 《Environmental Science and Ecotechnology》 SCIE 2024年第6期327-338,共12页
Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box&q... Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas,level IV in the northern region,and level V in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments. 展开更多
关键词 Intelligent environmental assessment TRANSFORMER Multi-source data Explainable AI
原文传递
借壳上市还是IPO:上市方式影响分析师预测行为吗? 被引量:4
3
作者 程子健 陈韵竹 白雪莲 《会计与经济研究》 CSSCI 北大核心 2022年第3期111-128,共18页
文章基于2007-2019年中国借壳上市公司与IPO公司财务数据,运用全样本、手工配对样本与倾向得分匹配(PSM)样本实证检验了上市方式对分析师跟踪与预测行为的影响,结果发现:相比于IPO公司,分析师对借壳上市公司的跟踪数量更少,盈余预测的... 文章基于2007-2019年中国借壳上市公司与IPO公司财务数据,运用全样本、手工配对样本与倾向得分匹配(PSM)样本实证检验了上市方式对分析师跟踪与预测行为的影响,结果发现:相比于IPO公司,分析师对借壳上市公司的跟踪数量更少,盈余预测的准确度更低、分歧度更高,且内部控制质量是上市方式影响分析师预测行为的重要作用机制。在IPO提速后,借壳上市公司与IPO公司在分析师关注度方面的差异消失,而分析师对新增IPO公司的预测准确度更低、分歧度更高,说明IPO提速带来了分析师注意力分散效应。随着上市时间推移,借壳上市公司与IPO公司在分析师预测准确度与分歧度方面的差异将逐渐弥合。相比于原有“壳公司”,分析师对借壳上市后的新公司关注度更高,而预测准确度与分歧度却无显著差异。以上实证结果表明,上市方式是影响分析师预测行为的重要因素,主要研究结论对于投资者合理利用分析师预测信息,以及分析师结合上市方式在IPO常态化发行背景下进一步提升自身预测准确度具有重要的理论指导意义。 展开更多
关键词 借壳上市 IPO 分析师预测 内部控制
原文传递
稳态视觉诱发电位及其在视觉选择性注意研究中的应用
4
作者 陈晓宇 程子健 +2 位作者 胡成谧 梁腾飞 刘强 《科学通报》 EI CAS CSCD 北大核心 2020年第24期2601-2614,共14页
以固定频率发生周期性变化的视觉刺激信号进入大脑后,将会诱发一系列与之频率相同的周期性脑电位,这个电位叫做稳态视觉诱发电位(steady-state visual evoked potentials,SSVEP).SSVEP广泛应用于脑机接口和人类认知研究中.相同频率下,SS... 以固定频率发生周期性变化的视觉刺激信号进入大脑后,将会诱发一系列与之频率相同的周期性脑电位,这个电位叫做稳态视觉诱发电位(steady-state visual evoked potentials,SSVEP).SSVEP广泛应用于脑机接口和人类认知研究中.相同频率下,SSVEP的振幅高低与视觉注意资源分配具有相关性,因此在视觉选择性注意研究中常常使用SSVEP作为表征注意分配的电生理指标.以SSVEP为指标进行视觉选择性注意研究时,主要的应用手段是频率标记.频率标记是指让被标记刺激发生特定频率的周期性变化,从而诱发与之频率相同的SSVEP,并以每个刺激诱发的SSVEP的振幅作为注意资源分配水平的指标.根据研究目的不同,在频率标记的基础上进一步发展出了快速周期性视觉刺激范式和随机运动点阵范式用于视觉注意的研究.视觉选择性注意中,SSVEP适用于基于空间的注意和基于特征的注意研究.今后使用SSVEP对视觉选择性注意进行研究时,可以试图增加如情绪诱发、奖励和惩罚、工作记忆表征等影响视觉选择性注意的研究变量,也可以以SSVEP为指标,建立基于特征的注意和基于空间的注意之间的联系.此外,脑机接口研究中开发的针对SSVEP的算法也许可引入视觉选择性注意研究中. 展开更多
关键词 稳态视觉诱发电位 视觉选择性注意 频率标记 注意资源
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部