期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
微乳液法制备纳米氧化锌及其光催化性能探究
1
作者 江梓键 刘雨昂 +3 位作者 宗毅健 范勇 朱万春 郭玉鹏 《大学化学》 CAS 2024年第5期266-273,共8页
纳米氧化锌的制备是一项特色鲜明的经典无机化学实验,制备途径多样。本文针对综合化学实验“纳米氧化锌粉的制备”的现有实验流程所存在的问题进行了创新性的改进。设计了基于微乳液法的氧化锌纳米粒子的制备实验、微乳液形成影响因素... 纳米氧化锌的制备是一项特色鲜明的经典无机化学实验,制备途径多样。本文针对综合化学实验“纳米氧化锌粉的制备”的现有实验流程所存在的问题进行了创新性的改进。设计了基于微乳液法的氧化锌纳米粒子的制备实验、微乳液形成影响因素的探究性实验与光催化性能的动力学实验。本实验方案反应温和易控,操作安全,现象明显,绿色环保。相对于传统的纳米氧化锌制备实验,本方案内容充实,时间利用率更高,实验内容安排更科学合理;现象明显,趣味性更强;综合性、探究性更强,在巩固学生的基本实验技能的基础上,可进一步培养学生的科研思维,提升科研技能。 展开更多
关键词 微乳液法 氧化锌 纳米粒子 光催化
下载PDF
Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
2
作者 zijian jiang Jianwen Zhou Haiping Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期25-32,共8页
Artificial neural networks can achieve impressive performances,and even outperform humans in some specific tasks.Nevertheless,unlike biological brains,the artificial neural networks suffer from tiny perturbations in s... Artificial neural networks can achieve impressive performances,and even outperform humans in some specific tasks.Nevertheless,unlike biological brains,the artificial neural networks suffer from tiny perturbations in sensory input,under various kinds of adversarial attacks.It is therefore necessary to study the origin of the adversarial vulnerability.Here,we establish a fundamental relationship between geometry of hidden representations(manifold perspective)and the generalization capability of the deep networks.For this purpose,we choose a deep neural network trained by local errors,and then analyze emergent properties of the trained networks through the manifold dimensionality,manifold smoothness,and the generalization capability.To explore effects of adversarial examples,we consider independent Gaussian noise attacks and fast-gradient-sign-method(FGSM)attacks.Our study reveals that a high generalization accuracy requires a relatively fast power-law decay of the eigen-spectrum of hidden representations.Under Gaussian attacks,the relationship between generalization accuracy and power-law exponent is monotonic,while a non-monotonic behavior is observed for FGSM attacks.Our empirical study provides a route towards a final mechanistic interpretation of adversarial vulnerability under adversarial attacks. 展开更多
关键词 neural networks learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部