The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa...The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.展开更多
In the work,rGO nanosheet is synthesized using the typical Hummer’s method,then Cu12Sb4 S13 quantum dots@rGO composites are prepared by solvent thermal method,and Cu12Sb4 S13 quantum dots with the average size of 5 n...In the work,rGO nanosheet is synthesized using the typical Hummer’s method,then Cu12Sb4 S13 quantum dots@rGO composites are prepared by solvent thermal method,and Cu12Sb4 S13 quantum dots with the average size of 5 nm are densely distributed on the surface of rGO sheet.NH3 gas response of Cu12Sb4 S13quantum dots@rGO nanosheet composites at room te mperature of 25℃is enhanced compared with the pure Cu12Sb4 S13 quantum dots and rGO nanosheet,and the composites possess an excellent stability during the humidity range of 45%-80%with a low detection limit of 1 ppm,which is related with the intrinsic hydrophobicity characteristic of Cu12Sb4 S13 quantum dots.It also proves that Cu12Sb4 S13quantum dots@rGO nanosheet composites have a quite high selectivity towards ammonia compared with ethanol,methanol,acetone,toluene,hydrogen sulfide and nitrogen dioxide at room temperature.The gas sensing mechanism of the composites is discussed primarily.展开更多
基金supported by the National Key R&D Program of China (Grant No.2022YFA1402903)the National Natural Science Foundation of China (Grant Nos.52172116 and 62171214)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.
基金supported by the National Natural Science Foundation of China(No.11674258)the 111 Project(No.B18038)+4 种基金Key projects of Natural Science Foundation of Hubei Province(No.2019CFA044)Applied Basic Research Program of Wuhan(No.2018010401011278)Science and Technology Innovation Program of Hubei Province(No.2018B KJ005)Natural Science Foundation of Hunan Province,China(No.2018JJ3527)Students Innovation and Entrepreneurship Training Program(No.20181049721003)。
文摘In the work,rGO nanosheet is synthesized using the typical Hummer’s method,then Cu12Sb4 S13 quantum dots@rGO composites are prepared by solvent thermal method,and Cu12Sb4 S13 quantum dots with the average size of 5 nm are densely distributed on the surface of rGO sheet.NH3 gas response of Cu12Sb4 S13quantum dots@rGO nanosheet composites at room te mperature of 25℃is enhanced compared with the pure Cu12Sb4 S13 quantum dots and rGO nanosheet,and the composites possess an excellent stability during the humidity range of 45%-80%with a low detection limit of 1 ppm,which is related with the intrinsic hydrophobicity characteristic of Cu12Sb4 S13 quantum dots.It also proves that Cu12Sb4 S13quantum dots@rGO nanosheet composites have a quite high selectivity towards ammonia compared with ethanol,methanol,acetone,toluene,hydrogen sulfide and nitrogen dioxide at room temperature.The gas sensing mechanism of the composites is discussed primarily.