期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Moirésuperlattice modulations in single-unit-cell FeTe films grown on NbSe_(2)single crystals 被引量:1
1
作者 Han-Bin Deng Yuan Li +15 位作者 zili feng Jian-Yu Guan Xin Yu Xiong Huang Rui-Zhe Liu Chang-Jiang Zhu Limin Liu Ying-Kai Sun Xi-Liang Peng Shuai-Shuai Li Xin Du Zheng Wang Rui Wu Jia-Xin Yin You-Guo Shi Han-Qing Mao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期131-135,共5页
Interface can be a fertile ground for exotic quantum states,including topological superconductivity,Majorana mode,fractal quantum Hall effect,unconventional superconductivity,Mott insulator,etc.Here we grow single-uni... Interface can be a fertile ground for exotic quantum states,including topological superconductivity,Majorana mode,fractal quantum Hall effect,unconventional superconductivity,Mott insulator,etc.Here we grow single-unit-cell(1UC)FeTe film on NbSe_(2)single crystal by molecular beam epitaxy(MBE)and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy(STM)and non-contact atomic force microscopy(AFM)combined system.We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe_(2)substrate.We show that these stripe-like superlattice modulations can be understood as moirépattern forming between FeTe film and NbSe_(2)substrate.Our results indicate that the interface between Fe Te and NbSe2 is atomically sharp.By STM-AFM combined measurement,we suggest that the moirésuperlattice modulations have an electronic origin when the misorientation angle is relatively small(≤3°)and have structural relaxation when the misorientation angle is relatively large(≥10°). 展开更多
关键词 scanning tunneling microscopy(STM) atomic force microscopy(AFM) FeTe film moirésuperlattice MISORIENTATION
下载PDF
From Claringbullite to a New Spin Liquid Candidate Cu_3Zn(OH)_6FCl
2
作者 zili feng Wei Yi +7 位作者 Kejia Zhu Yuan Wei Shanshan Miao Jie Ma Jianlin Luo Shiliang Li Zi Yang Meng Youguo Shi 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期70-74,共5页
The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hostin... The search for quantum spin liquid(QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite(Cu_4(OH)_6FCl) and then replace inter-layer Cu with Zn to form Cu_3Zn(OH)_6FCl. Comprehensive measurements reveal that doping Zn^(2+) ions transforms magnetically ordered Cu_4(OH)_6FCl into a non-magnetic QSL candidate Cu_3Zn(OH)_6FCl. Therefore,the successful syntheses of Cu_4(OH)_6FCl and Cu_3Zn(OH)_6FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems. 展开更多
关键词 Clarinbrey STONE Cu3Zn(OH)6FCl QSL
下载PDF
Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu_(3)Zn(OH)_(6)FBr
3
作者 Yuan Wei Xiaoyan Ma +8 位作者 zili feng Yongchao Zhang Lu Zhang Huaixin Yang Yang Qi Zi Yang Meng Yan-Cheng Wang Youguo Shi Shiliang Li 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第9期96-100,共5页
We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like featur... We systematically study the low-temperature specific heats for the two-dimensional kagome antiferromagnet,Cu_(3)Zn(OH)_(6)FBr.The specific heat exhibits a T1.7 dependence at low temperatures and a shoulder-like feature above it.We construct a microscopic lattice model of Z_(2) quantum spin liquid and perform large-scale quantum Monte Carlo simulations to show that the above behaviors come from the contributions from gapped anyons and magnetic impurities.Surprisingly,we find the entropy associated with the shoulder decreases quickly with grain size d,although the system is paramagnetic to the lowest temperature.While this can be simply explained by a core-shell picture in that the contribution from the interior state disappears near the surface,the 5.9-nm shell width precludes any trivial explanations.Such a large length scale signifies the coherence length of the nonlocality of the quantum entangled excitations in quantum spin liquid candidate,similar to Pippard’s coherence length in superconductors.Our approach therefore offers a new experimental probe of the intangible quantum state of matter with topological order. 展开更多
关键词 temperature QUANTUM TRIVIAL
下载PDF
Magnetic Phase Diagram of Cu4-xZnx(OH)6FBr Studied by Neutron-Diffraction and μSR Techniques
4
作者 Yuan Wei Xiaoyan Ma +10 位作者 zili feng Devashibhai Adroja Adrian Hillier Pabitra Biswas Anatoliy Senyshyn Andreas Hoser Jia-Wei Mei Zi Yang Meng Huiqian Luo Youguo Shi Shiliang Li 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第10期98-102,共5页
We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrang... We systematically investigate the magnetic properties of Cu4-xZnx(OH)6FBr using the neutron diffraction and muon spin rotation and relaxation(μSR) techniques.Neutron-diffraction measurements suggest that the longrange magnetic order and the orthorhombic nuclear structure in the x=0 sample can persist up to x=0.23 and 0.43,respectively.The temperature dependence of the zero-field μSR spectra provides two characteristic temperatures,TA0 and Tλ,which are associated with the initial drop close to zero time and the long-time exponential decay of the muon relaxation,respectively.Comparison between TA0 and TM from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to x=0.82.On the other hand,the doping level where Tλ becomes zero is about 0.66,which is much higher than threshold of the long-range order,i.e.,~0.4.Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above x=0.66 with the perfect kagome planes. 展开更多
关键词 RELAXATION ROTATION EXPONENTIAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部