The coastal eco-city of Fuzhou in Southeastern China has experienced severe ozone(O_(3))episodes at times in recent years.In this study,three typical synoptic circulations types(CTs)that influenced more than 80%of O_(...The coastal eco-city of Fuzhou in Southeastern China has experienced severe ozone(O_(3))episodes at times in recent years.In this study,three typical synoptic circulations types(CTs)that influenced more than 80%of O_(3) polluted days in Fuzhou during 2014-2019 were identified using a subjective approach.The characteristics of meteorological conditions linked to photochemical formation and transport of O_(3) under the three CTs were summarized.Comprehensive Air Quality Model with extensions was applied to simulate O_(3) episodes and to quantify O_(3) sources from different regions in Fuzhou.When Fuzhou was located to the west of a high-pressure system(classified as“East-ridge”),more warm southwesterly currents flowed to Fuzhou,and the effects of cross-regional transport from Guangdong province and high local production promoted the occurrence of O_(3) episodes.Under a uniform pressure field with a low-pressure system occurring to the east of Fuzhou(defined as“East-low”),stagnant weather conditions caused the strongest local production of O_(3) in the atmospheric boundary layer.Controlled by high-pressure systems over the mainland(categorized as“Inland-high”),northerly airflows enhanced the contribution of cross-regional transport to O_(3) in Fuzhou.The abnormal increases of the“East-ridge”and“Inland-high”were closely related to O_(3) pollution in Fuzhou in April and May 2018,resulting in the annual maximum number of O_(3) polluted days during recent years.Furthermore,the rising number of autumn O_(3) episodes in 2017-2019 was mainly related to the“Inland-high”,indicating the aggravation of cross-regional transport and highlighting the necessity of enhanced regional collaboration and efforts in combating O_(3) pollution.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0213204,2018YFC0213506).
文摘The coastal eco-city of Fuzhou in Southeastern China has experienced severe ozone(O_(3))episodes at times in recent years.In this study,three typical synoptic circulations types(CTs)that influenced more than 80%of O_(3) polluted days in Fuzhou during 2014-2019 were identified using a subjective approach.The characteristics of meteorological conditions linked to photochemical formation and transport of O_(3) under the three CTs were summarized.Comprehensive Air Quality Model with extensions was applied to simulate O_(3) episodes and to quantify O_(3) sources from different regions in Fuzhou.When Fuzhou was located to the west of a high-pressure system(classified as“East-ridge”),more warm southwesterly currents flowed to Fuzhou,and the effects of cross-regional transport from Guangdong province and high local production promoted the occurrence of O_(3) episodes.Under a uniform pressure field with a low-pressure system occurring to the east of Fuzhou(defined as“East-low”),stagnant weather conditions caused the strongest local production of O_(3) in the atmospheric boundary layer.Controlled by high-pressure systems over the mainland(categorized as“Inland-high”),northerly airflows enhanced the contribution of cross-regional transport to O_(3) in Fuzhou.The abnormal increases of the“East-ridge”and“Inland-high”were closely related to O_(3) pollution in Fuzhou in April and May 2018,resulting in the annual maximum number of O_(3) polluted days during recent years.Furthermore,the rising number of autumn O_(3) episodes in 2017-2019 was mainly related to the“Inland-high”,indicating the aggravation of cross-regional transport and highlighting the necessity of enhanced regional collaboration and efforts in combating O_(3) pollution.