The multiple roles of the tumor necrosis factor(TNF)-α-inducible protein 8(TNFAIP8),also named TIPE family of proteins have been shown in tumor and inflammation progression and regulation of cellular autophagy and ap...The multiple roles of the tumor necrosis factor(TNF)-α-inducible protein 8(TNFAIP8),also named TIPE family of proteins have been shown in tumor and inflammation progression and regulation of cellular autophagy and apoptosis.In this review,we found that the TIPE family showed highly homologous sequences and conserved functional domains,such as the death effector domain(DED)-like domain but displayed different roles and mechanisms in different biological activities.For example,while TIPE is primarily associated with tumor progression and antitumor drug resistance,TIPE1 suppresses tumor progression in most instances.TIPE2 has multiple roles in tumor progression regulation,and antitumor drug resistance.Moreover,TIPE2 was also involved in inflammatory response regulation,tumor typing,and staging.A few studies reported that TIPE3 was engaged in tumor development by activating the phosphatidylinositol-3-kinase(PI3K)/protein kinase B(AKT)signaling pathway.The structure,function,and mechanism of the TIPE family in cancer and inflammation have been summarized in this review.This might serve as a reference for further research on the TIPE family and shed new light on the crosstalk among antitumor responses,inflammation,and immunology.展开更多
In this article, a physics aware deep learning model is introduced for multiphase flow problems. The deep learning model is shown to be capable of capturing complex physics phenomena such as saturation front, which is...In this article, a physics aware deep learning model is introduced for multiphase flow problems. The deep learning model is shown to be capable of capturing complex physics phenomena such as saturation front, which is even challenging for numerical solvers due to the instability. We display the preciseness of the solution domain delivered by deep learning models and the low cost of deploying this model for complex physics problems, showing the versatile character of this method and bringing it to new areas. This will require more allocation points and more careful design of the deep learning model architectures and residual neural network can be a potential candidate.展开更多
基金supported by the Medical Scientific Research Foundation of Guangdong Province of China(No.A2021236)2022 Guangdong Provincial Education Science Planning Project(Higher Education Special Project,No.2022GXJK221)+4 种基金the 2021 Open Project Fund of Guangdong Provincial Key Laboratory of Medicinal Functional Gene Research,the National Key Clinical Specialty Construction Project(Clinical Pharmacy)and High-Level Clinical Key Specialty(Clinical Pharmacy)in Guangdong Province,Science and Technology Program of Guangzhou,China(No.202201010154)the Special Fund for the Cultivation of Scientific and Technological Innovation of College Students in Guangdong Province of China(No.pdjh2022b0270)the College Students’Innovation and Entrepreneurship Training Project of Guangdong Province(Nos.202210573054,202210573041)Special Fund for the Cultivation of National Natural Science Foundation of China in School of Clinical Pharmacy,Guangdong Pharmaceutical University(No.SCP2022-03)Jinghua(Zhejiang Province)Science and Technology Research Program Project(No.2021-4-135).
文摘The multiple roles of the tumor necrosis factor(TNF)-α-inducible protein 8(TNFAIP8),also named TIPE family of proteins have been shown in tumor and inflammation progression and regulation of cellular autophagy and apoptosis.In this review,we found that the TIPE family showed highly homologous sequences and conserved functional domains,such as the death effector domain(DED)-like domain but displayed different roles and mechanisms in different biological activities.For example,while TIPE is primarily associated with tumor progression and antitumor drug resistance,TIPE1 suppresses tumor progression in most instances.TIPE2 has multiple roles in tumor progression regulation,and antitumor drug resistance.Moreover,TIPE2 was also involved in inflammatory response regulation,tumor typing,and staging.A few studies reported that TIPE3 was engaged in tumor development by activating the phosphatidylinositol-3-kinase(PI3K)/protein kinase B(AKT)signaling pathway.The structure,function,and mechanism of the TIPE family in cancer and inflammation have been summarized in this review.This might serve as a reference for further research on the TIPE family and shed new light on the crosstalk among antitumor responses,inflammation,and immunology.
文摘In this article, a physics aware deep learning model is introduced for multiphase flow problems. The deep learning model is shown to be capable of capturing complex physics phenomena such as saturation front, which is even challenging for numerical solvers due to the instability. We display the preciseness of the solution domain delivered by deep learning models and the low cost of deploying this model for complex physics problems, showing the versatile character of this method and bringing it to new areas. This will require more allocation points and more careful design of the deep learning model architectures and residual neural network can be a potential candidate.