Hf_(0.5)Zr_(0.5)O_(2)(HZO)ferroelectric thin films have gained significant attention for the development of next-generation ferroelectric memories by complementary-metal-oxide semiconductor(CMOS)back-end-of-line(BEOL)...Hf_(0.5)Zr_(0.5)O_(2)(HZO)ferroelectric thin films have gained significant attention for the development of next-generation ferroelectric memories by complementary-metal-oxide semiconductor(CMOS)back-end-of-line(BEOL)processing,due to their relatively low crystallization temperature.However,it remains challenging to achieve excellent ferroelectric properties with post deposition annealing(PDA)process at a BEOL compatible temperature.Along these lines,in this work,it is demonstrated that the ferroelec-tricity of 15 nm thick HZO thin film prepared by PDA process at 400℃can be improved to varying degrees,via depositing 2 nm thick dielectric layers of Al_(2)O_(3),HfO_(2),or ZrO_(2)at either the bottom or the top of the film.Notably,the HZO thin film with the top-Al_(2)O_(3)layer exhibits remarkable ferroelectric prop-erties,which are independent of the thickness of HZO.The 6 nm thick HZO thin film shows a total remanent polarization(2Pr)of 31 mC/cm^(2)under an operating voltage of 2.5 V.These results represent a significant advancement in the fabrication of high-performance,BEOL compatible ferroelectric mem-ories,as compared to previously reported state-of-the-art works.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.52122205,52102147,52072324,11932016)the China Postdoctoral Science Foundation(2022M712674).
文摘Hf_(0.5)Zr_(0.5)O_(2)(HZO)ferroelectric thin films have gained significant attention for the development of next-generation ferroelectric memories by complementary-metal-oxide semiconductor(CMOS)back-end-of-line(BEOL)processing,due to their relatively low crystallization temperature.However,it remains challenging to achieve excellent ferroelectric properties with post deposition annealing(PDA)process at a BEOL compatible temperature.Along these lines,in this work,it is demonstrated that the ferroelec-tricity of 15 nm thick HZO thin film prepared by PDA process at 400℃can be improved to varying degrees,via depositing 2 nm thick dielectric layers of Al_(2)O_(3),HfO_(2),or ZrO_(2)at either the bottom or the top of the film.Notably,the HZO thin film with the top-Al_(2)O_(3)layer exhibits remarkable ferroelectric prop-erties,which are independent of the thickness of HZO.The 6 nm thick HZO thin film shows a total remanent polarization(2Pr)of 31 mC/cm^(2)under an operating voltage of 2.5 V.These results represent a significant advancement in the fabrication of high-performance,BEOL compatible ferroelectric mem-ories,as compared to previously reported state-of-the-art works.