期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
1
作者 ziqi zhang Jinyun Xu +9 位作者 Yu zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
2
作者 Xintao Wu Chengcheng Li +7 位作者 ziqi zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Comprehensive understanding of glioblastoma molecular phenotypes:classification,characteristics,and transition
3
作者 Can Xu Pengyu Hou +7 位作者 Xiang Li Menglin Xiao ziqi zhang Ziru Li Jianglong Xu Guoming Liu Yanli Tan Chuan Fang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期363-381,共19页
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le... Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators. 展开更多
关键词 GLIOBLASTOMA molecular phenotype CLASSIFICATION CHARACTERISTIC mesenchymal transition
下载PDF
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications
4
作者 ziqi zhang Sheng Wan +4 位作者 Hanbo Wang Jinghan He Ruige zhang Yuhang Qi Haiyan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期535-542,I0012,共9页
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to... Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts. 展开更多
关键词 Electrocatalytic water splitting Hydrogen evolution reaction Oxygen evolution reaction Electrochemical synthesis Anion exchange membrane
下载PDF
Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries 被引量:1
5
作者 Linfeng Peng Chuang Yu +5 位作者 ziqi zhang Ruonan Xu Mengjun Sun Long zhang Shijie Cheng Jia Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期26-33,共8页
Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electro... Solid/solid interface is the major challenge for high-performance solid-state batteries.Solid electrolytes(SEs)play a crucial role in the fabrication of effective interfaces in solid-state batteries.Herein,the electrolyte distribution with varied particle sizes is tuned to construct solid-state batteries with excellent performance at different operating temperatures.Solid-state batteries with the configuration S/L(small-sized SE in composite cathode and large-sized SE in electrolyte layer)show the best performance at room temperature(168 mA h g^(−1) at 0.2 C,retention of 99%,100 cycles)and−20°C(89 mA h g^(−1) at 0.05 C),while the configuration S/S displays better performance at elevated temperature.The superior performance of S/L battery is associated with faster lithium-ion dynamics due to the better solid/solid interface between active materials and electrolytes.Moreover,the inferior performance at 60℃is caused by the formation of voids and cracks in the electrolyte layer during cycling.In contrast,the S/S battery delivers superior performance at elevated operating temperature because of the integrated structure.This work confirms that tailoring electrolyte size has significant effect on fabricating all-climate solid-state batteries. 展开更多
关键词 electrochemical performance lithium argyrodite operating temperature size distribution solid-state batteries
下载PDF
Identification of High-Risk Scenarios for Cascading Failures in New Energy Power Grids Based on Deep Embedding Clustering Algorithms
6
作者 Xueting Cheng ziqi zhang +1 位作者 Yueshuang Bao Huiping Zheng 《Energy Engineering》 EI 2023年第11期2517-2529,共13页
At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident... At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios. 展开更多
关键词 New energy power system deep embedding clustering algorithms cascading failures
下载PDF
Preliminary Phenotypic and SNP-Based Molecular Characterization of Maize (<i>Zea mays</i>L.)-Mexicana (<i>Zea mays</i>SSP. <i>Mexicana</i>) Introgression Lines under Inbred Background of 48-2
7
作者 Abdoul Raouf Sayadi Maazou Ju Qiu +13 位作者 Ling Ai Mohammad G. Arabzai Mengya Qian Hameed Gul Xuemei Du Fangyu Xing Jiarui Yan Keyi zhang ziqi zhang Qiannan Ma Tianhui Huang Hong Duan Qianlin Xiao Zhizhai Liu 《American Journal of Plant Sciences》 2021年第7期1073-1089,共17页
Wild relatives possess potential genetic diversity for maize (<i><span style="font-family:Verdana;">Zea mays</span></i><span style="font-family:Verdana;"> L.) improvem... Wild relatives possess potential genetic diversity for maize (<i><span style="font-family:Verdana;">Zea mays</span></i><span style="font-family:Verdana;"> L.) improvement. Characterization of maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> introgression lines (ILs) is of great value to diversify the genetic base and improve the maize germplasm. Four maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> IL generations, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> BC1, BC2, BC3, and RIL, were constructed under the elite inbred background of 48-2, elite inbred line that is widely used in maize breeding in Southwestern China, and were phenotyped in different years and genotyped with 56110 SNPs. The results indicated that 48-2 had higher phenotypic performances than all the characterized ILs on most of the agronomic traits. Compared with other ILs, BC2 individuals exhibited more similar performance to 48-2 on most traits and possessed the highest kernel ratio (66.5%). Population structure and principal component analysis indicated that BC3 individuals gathered closer to 48-2 and exhibited the lowest </span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;">-introgression frequency (0.50%), while BC2 (29.06%) and RIL (18.52%) showed higher introgression frequency. The high level of genetic diversity observed in the maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> ILs demonstrated that </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">mays</span></i><span style="font-family:Verdana;"> ssp. </span><i><span style="font-family:Verdana;">mexicana </span></i><span style="font-family:Verdana;">can serve as a potential source for the enrichment of maize germplasm.</span> 展开更多
关键词 Maize (Zea mays L.) Mexicana (Zea mays SSP. Mexicana) Introgression Lines Phenotypic Characterization Molecular Characterization
下载PDF
Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau 被引量:16
8
作者 ziqi zhang Yuan Gao 《Earth and Planetary Physics》 CSCD 2019年第1期69-84,共16页
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele... In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers. 展开更多
关键词 receiver functions SEDIMENTARY layer SOUTHEAST MARGIN of the Tibetan Plateau CRUSTAL thickness Poisson's ratio Chuxiong-Simao Basin
下载PDF
Facile synthesis of bimetallic N-doped carbon hybrid material for electrochemical nitrogen reduction 被引量:2
9
作者 Linchuan Cong Kaida Yao +5 位作者 Siqi zhang ziqi zhang Zhuochen Yu Miaomiao Qian Lina Qu Weimin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期715-720,I0015,共7页
Due to the increasingly depleted limited fossil fuel resources,the development of renewable energy is the key to promote sustainable development which is an important part of the energy strategy[1].NH3 is one of most ... Due to the increasingly depleted limited fossil fuel resources,the development of renewable energy is the key to promote sustainable development which is an important part of the energy strategy[1].NH3 is one of most important and largest chemical productions in the world,it can be used as a feedstock for nitrogen fertilizer productions[2,3]or as a carbon-free energy carrier[4,5]. 展开更多
关键词 ELECTROCATALYSIS NH_(3) synthesis Co and Ru bimetal Nitrogen-doped carbon layer Ambient conditions
下载PDF
High performance room temperature all-solid-state Na-SexS battery with Na3SbS4-coated cathode via aqueous solution 被引量:1
10
作者 ziqi zhang Haonan Cao +4 位作者 Meng Yang Xinlin Yan Chuang Yu Di Liu Long zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期250-258,I0008,共10页
All-solid-state(ASS)Na-S batteries are promising for large-scale energy storage because of the incombustible solid electrolyte and avoiding the dissolution of intermediates.However,the poor contact between the active ... All-solid-state(ASS)Na-S batteries are promising for large-scale energy storage because of the incombustible solid electrolyte and avoiding the dissolution of intermediates.However,the poor contact between the active material and the solid electrolyte in the positive electrode leads to poor electrochemical performance.Here,we report an aqueous solution approach to fabricate Na3SbS4-coated SexS-based active materials for a Na-S battery working at room temperature.Compared with the Na3SbS4 and SexS mixed cathode,the coated cathode achieves significantly improved Na-ion diffusion kinetics and reduced impedance resistance.Additionally,the nanoparticle coating sustains the volume expansion of the cathode during cycling.The resulting batteries deliver an intensively enhanced specific capacity at various rates.Regardless of the mass loading,the Na3SbS4-coated cathode maintains a decent reversible capacity for the long-term discharge/charge cycling.The best battery achieves an initial discharge capacity of509 mAh g^-1 at a current density of 437.4 mA g^-1 and capacity retention of 98.9%for 100 cycles.To the best of our knowledge,this is one of the best room temperature ASS Na-S battery so far.This work demonstrates that Na3SbS4 is very promising for the cathode coating purpose for ASS Na-S batteries. 展开更多
关键词 Solid electrolyte Coating SPAN All-solid-state battery Room temperature Na-S battery
下载PDF
Cu nanowire array with designed interphases enabling high performance Si anode toward flexible lithium-ion battery
11
作者 Pengfei Su ziqi zhang +10 位作者 Linshan Luo Zhiyong zhang Chaofei Lan Yahui Li Shaowen Xu Shanpeng Pei Guangyang Lin Cheng Li Xiang Han Wei Huang Songyan Chen 《Nano Research》 SCIE EI CSCD 2024年第3期1516-1524,共9页
To meet the growing demand for wearable smart electronic devices,the development of flexible lithium-ion batteries(LIBs)is essential.Silicon is an ideal candidate for the anode material of flexible lithium-ion batteri... To meet the growing demand for wearable smart electronic devices,the development of flexible lithium-ion batteries(LIBs)is essential.Silicon is an ideal candidate for the anode material of flexible lithium-ion batteries due to its high specific capacity,low working potential,and earth abundance.The largest challenge in developing a flexible silicon anode is how to maintain structural integrity and ensure stable electrochemical reactions during external deformation.In this work,we propose a novel design for fabricating core–shell electrodes based on a copper nanowire(CuNW)array core and magnetron sputtered Si/C shell.The nanowire array structure has characteristics of bending under longitudinal stress and twisting under transverse stress,which helps to maintain the mechanical stability of the structure during electrode bending and cycling.The low-temperature annealing generates a small amount of Cu3Si alloy,which enhances the connection strength between Si and the conductive network and solves the poor conductivity problem of Si,which is known as a semiconductor material.This unique configuration design of CuNW@Si@C-400℃ leads to stable long cycle performance of 1109 mAh∙g^(-1) after 1000 cycles and excellent rate performance of 500 mAh∙g^(-1) at a current density of 10 A∙g^(-1).Furthermore,the CuNW@Si@C-400℃||LiFePO_(4)(LFP)full battery demonstrates excellent flexibility,with a capacity retention of more than 96%after 100 bends.This study provides a promising strategy for the development of flexible lithium-ion batteries. 展开更多
关键词 flexible lithium-ion battery silicon anode magnetron sputtering core–shell electrode Cu nanowire array
原文传递
Evolutionary mechanism and frequency response of graphite electrode at extreme temperatures
12
作者 Shanpeng Pei Zhiyong zhang +9 位作者 Xiuli zhang Yan Liu Xiang Han Linshan Luo Pengfei Su Chaofei Lan Wei Huang ziqi zhang Ming-Sheng Wang Songyan Chen 《Nano Research》 SCIE EI CSCD 2024年第8期7283-7289,共7页
The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating.However,this outside–in detection method often suffers from a lag ... The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating.However,this outside–in detection method often suffers from a lag and is therefore unable to accurately predict the battery’s real-time state.Herein,an inside–out frequency response approach is used to accurately monitor the battery’s state at various temperatures in real-time and correlate it with the solid electrolyte interphase(SEI)evolution of the graphite electrode.The SEI evolution at temperatures of−15,25,60,and 90℃exhibits certain regular characteristics with temperature change.At a temperature of−15℃,the Li^(+)-solvent interaction of lithium-ion slowed down,resulting in a significant reduction in performance.At 25℃,a LiF-rich inorganic SEI was identified as forming,which facilitated lithium-ion transportation.However,high temperatures would induce decomposition of lithium hexafluorophosphate(LiPF_(6))and lithium-ion electrolyte.At the extreme temperature of 90℃,the SEI would be organic-rich,and Li_(x)P_(y)F_(z),a decomposition product of lithium salts,was further oxidized to Li_(x)PO_(y)F_(z),which led to a surge in the charge-transfer resistance at SEI(R_(sei))and a reduction in Coulombic efficiency(CE).This changing relationship can be recorded in real time from the inside out by electrochemical impedance spectroscopy(EIS)testing.This provides a new theoretical basis for the structural evolution of lithium-ion batteries and the regular characterization of EIS. 展开更多
关键词 graphite electrode solid electrolyte interphase(SEI)film extreme temperatures frequency response evolutionary mechanism
原文传递
Enabling superior electrochemical performance of NCA cathode in Li_(5.5)PS_(4.5)Cl_(1.5)-based solid-state batteries with a dual-electrolyte layer
13
作者 Ziling Jiang Shaoqing Chen +6 位作者 Chaochao Wei ziqi zhang Zhongkai Wu Qiyue Luo Liang Ming Long zhang Chuang Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期231-236,共6页
LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA) is a promising cathode for sulfide-based solid-state lithium batteries(ASSLBs)profiting from its high specific capacity and voltage plateau, which yielding high energy density. H... LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA) is a promising cathode for sulfide-based solid-state lithium batteries(ASSLBs)profiting from its high specific capacity and voltage plateau, which yielding high energy density. However, the inferior interfacial stability between the bare NCA and sulfides limits its electrochemical performance. Hereien, the dual-electrolyte layer is proposed to mitigate this effect and enhance the battery performances of NCA-based ASSLIBs. The Li_(3)InCl_6 wih high conductivity and excellent electrochemcial stability act both as an ion additives to promote Li-ion diffusion across the interface in the cathode and as a buffer layer between the cathode layer and the solid electrolyte layer to avoid side reactions and improve the interface stability. The corresponding battery exhibits high discharge capacities and superior cyclabilities at both room and elevated temperatures. It exhibits discharge performance of 237.04 and216.07 m Ah/g at 0.1 and 0.5 C, respectively, when cycled at 60 ℃, and sustains 95.9% of the capacity after100 cycles at 0.5 C. The work demonstrates a simple strategy to ensure the superior performances of NCA in sulfide-based ASSLBs. 展开更多
关键词 LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2) Li_(5.5)PS_(4.5)Cl_(1.5) Double solid electrolyte layer configuration Operating temperatures Electrochemical performances
原文传递
Metal–Organic Framework-Derived Hollow Nanocubes as Stable Noble Metal-Free Electrocatalyst for Water Splitting at High Current Density
14
作者 ziqi zhang Zhe zhang +4 位作者 Xiaobo Chen Hanbo Wang Haiyan Lu Zhan Shi Shouhua Feng 《CCS Chemistry》 CSCD 2024年第5期1324-1337,共14页
Alkaline water electrolysis is an environmentally friendly and promising approach to produce hydrogen.However,high cost,low efficiency,and poor stability are roadblocks to commercialization of electrocatalysts.This wo... Alkaline water electrolysis is an environmentally friendly and promising approach to produce hydrogen.However,high cost,low efficiency,and poor stability are roadblocks to commercialization of electrocatalysts.This work aims to design and develop a highly efficient,durable,and cost-effective electrocatalyst toward water splitting through modifying metal–organic frameworks.The electrocatalytic performance and stability surpass those of noble metal benchmarks at high current density(1–10 A·cm^(−2)).Theoretical calculations and in situ Raman spectra reveal the electronic structure of the synthesized catalyst and the mechanism of the catalytic reaction process,which rationalizes that the high catalytic activity and stability at high current are attributed to the unique electronic structure of cobalt regulated by copper and the protection provided by carbon nanotubes formed in situ,respectively.In addition,this paper proposes that the desorption ability of the catalyst toward the products(H_(2)and O_(2)),rather than the adsorption ability toward the reactants(H^(+)or OH^(−)),is more important to the sustainable and stable electrochemical water splitting progress at high current density,which is a kinetic rather than thermodynamic dominating process.The findings provide alternative insights to design and employ high performance catalysts to fuel hydrogen production as a clean energy source to tackle the global energy crisis. 展开更多
关键词 metal-organic frameworks non-noble metal catalyst hydrogen evolution reaction oxygen evolution reaction electrocatalytic water splitting
原文传递
Tuning the electron transport behavior at Li/LATP interface for enhanced cyclability of solid-state Li batteries 被引量:1
15
作者 Linshan Luo Feng Zheng +17 位作者 Haowen Gao Chaofei Lan Zhefei Sun Wei Huang Xiang Han ziqi zhang Pengfei Su Peng Wang Shengshi Guo Guangyang Lin Jianfang Xu Jianyuan Wang Jun Li Cheng Li Qiaobao zhang Shunqing Wu Ming-Sheng Wang Songyan Chen 《Nano Research》 SCIE EI CSCD 2023年第1期1634-1641,共8页
An interlayer is usually employed to tackle the interfacial instability issue between solid electrolytes(SEs)and Li metal caused by the side reaction.However,the failure mechanism of the ionic conductor interlayers,es... An interlayer is usually employed to tackle the interfacial instability issue between solid electrolytes(SEs)and Li metal caused by the side reaction.However,the failure mechanism of the ionic conductor interlayers,especially the influence from electron penetration,remains largely unknown.Herein,using Li1.3Al0.3Ti1.7(PO4)3(LATP)as the model SE and LiF as the interlayer,we use metal semiconductor contact barrier theory to reveal the failure origin of Li/LiF@LATP interface based on the calculation results of density functional theory(DFT),in which electrons can easily tunnel through the LiF grain boundary with F vacancies due to its narrow barrier width against electron injection,followed by the reduction of LATP.Remarkably,an Al-LiF bilayer between Li/LATP is found to dramatically promote the interfacial stability,due to the highly increased barrier width and homogenized electric field at the interface.Consequently,the Li symmetric cells with Al-LiF bilayer can exhibit excellent cyclability of more than 2,000 h superior to that interlayered by LiF monolayer(~860 h).Moreover,the Li/Al-LiF@LATP/LiFePO4 solid-state batteries deliver a capacity retention of 83.2%after 350 cycles at 0.5 C.Our findings emphasize the importance of tuning the electron transport behavior by optimizing the potential barrier for the interface design in high-performance solid-state batteries. 展开更多
关键词 solid-state electrolyte Li metal LIF Al electron transport interfacial barrier
原文传递
Removing microplastics from aquatic environments:A critical review 被引量:1
16
作者 Yusheng Pan Shu-Hong Gao +8 位作者 Chang Ge Qun Gao Sijing Huang Yuanyuan Kang Gaoyang Luo ziqi zhang Lu Fan Yongming Zhu Ai-Jie Wang 《Environmental Science and Ecotechnology》 SCIE 2023年第1期37-53,共17页
As one of the typical emerging contaminants,microplastics exist widely in the environment because of their small size and recalcitrance,which has caused various ecological problems.This paper summarizes current adsorp... As one of the typical emerging contaminants,microplastics exist widely in the environment because of their small size and recalcitrance,which has caused various ecological problems.This paper summarizes current adsorption and removal technologies of microplastics in typical aquatic environments,including natural freshwater,marine,drinking water treatment plants(DWTPs),and wastewater treatment plants(WWTPs),and includes abiotic and biotic degradation technologies as one of the removal technologies.Recently,numerous studies have shown that enrichment technologies have been widely used to remove microplastics in natural freshwater environments,DWTPs,and WWTPs.Efficient removal of microplastics via WWTPs is critical to reduce the release to the natural environment as a key connection point to prevent the transfer of microplastics from society to natural water systems.Photocatalytic technology has outstanding pre-degradation effects on microplastics,and the isolated microbial strains or enriched communities can degrade up to 50%or more of pre-processed microplastics.Thus,more research focusing on microplastic degradation could be carried out by combining physical and chemical pretreatment with subsequent microbial biodegradation.In addition,the current recovery technologies of microplastics are introduced in this review.This is incredibly challenging because of the small size and dispersibility of microplastics,and the related technologies still need further development.This paper will provide theoretical support and advice for preventing and controlling the ecological risks mediated by microplastics in the aquatic environment and share recommendations for future research on the removal and recovery of microplastics in various aquatic environments,including natural aquatic environments,DWTPs,and WWTPs. 展开更多
关键词 Aquatic environment Enrichment and removal Microplastics Wastewater treatment plants
原文传递
Review on electrochemical carbon dioxide capture and transformation with bipolar membranes
17
作者 Jinyun Xu Guoqiang Zhong +12 位作者 Minjing Li Di Zhao Yu Sun Xudong Hu Jiefang Sun Xiaoyun Li Wenju Zhu Ming Li ziqi zhang Yu zhang Liping Zhao Chunming Zheng Xiaohong Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期114-129,共16页
Anthropogenic carbon dioxide(CO_(2))emission from the combustion of fossil fuels aggravates the global greenhouse effect.The implementation of CO_(2)capture and transformation technologies have recently received great... Anthropogenic carbon dioxide(CO_(2))emission from the combustion of fossil fuels aggravates the global greenhouse effect.The implementation of CO_(2)capture and transformation technologies have recently received great attention for providing a pathway in dealing with global climate change.Among these technologies,electrochemical CO_(2)capture technology has attracted wide attention because of its environmental friendliness and flexible operating processes.Bipolar membranes(BPMs)are considered as one of the key components in electrochemical devices,especially for electrochemical CO_(2)reduction and electrodialysis devices.BPMs create an alkaline environment for CO_(2)capture and a stable pH environment for electrocatalysis on a single electrode.The key to CO_(2)capture in these devices is to understand the water dissociation mechanism occurring in BPMs,which could be used for optimizing the operating conditions for CO_(2)capture and transformation.In this paper,the references and technologies of electrochemical CO_(2)capture based on BPMs are reviewed in detail,thus the challenges and opportunities are also discussed for the development of more efficient,sustainable and practical CO_(2)capture and transformation based on BPMs. 展开更多
关键词 Bipolar membranes Carbon dioxide Electrochemical capture TRANSFORMATION CO_(2)reduction Electrodialysis devices Water dissociation
原文传递
Situation Awareness and Sensitivity Analysis for Absorption of Grid-connected Renewable Energy Power Generation Integrating Robust Optimization and Radial Basis Function Neural Network
18
作者 ziqi zhang Zhong Chen +2 位作者 Qi Zhao Yi Wang Jiang Tian 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期1795-1803,共9页
The significance of situation awareness(SA) in power systems has increased to enhance the utilization of gridconnected renewable energy power generation(REPG). This paper proposes a real-time calculation architecture ... The significance of situation awareness(SA) in power systems has increased to enhance the utilization of gridconnected renewable energy power generation(REPG). This paper proposes a real-time calculation architecture based on the integration of robust optimization(RO) and artificial intelligence. First, the time-series simulation of the REPG consumption capacity is carried out under the current grid operating conditions. RO is employed in this simulation, given the randomness of the REPG output and the grid load. Then, the radial basis function neural network(RBFNN) is trained with the results under different parameters using the artificial fish swarm algorithm(AFSA), enabling the neural network(NN) to be the replacement for the time-series simulation model. The trained NN can quickly perceive the REPG absorption situation within the predefined grid structure and period. Moreover, the Sobol' method is adopted to conduct the global sensitivity analysis for different parameters based on the input-output samples obtained by the trained NN. Finally, the simulation experiments based on the modified IEEE 14-bus system prove the real-time performance and accuracy of the proposed SA architecture. 展开更多
关键词 Renewable energy radial basis function neural network robust optimization sensitivity analysis situation awareness
原文传递
Pitch-derived 3D amorphous carbon encapsulated sulfur-rich cathode for aqueous Zn-S batteries
19
作者 Kangning Wang Jianwei Wang +3 位作者 ziqi zhang Wenlin zhang Feng Fu Yaping Du 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2711-2718,共8页
Rechargeable aqueous zinc batteries have attracted much attention due to their high security, plentiful zinc resources, and environmental friendliness. However, it can only offer limited specific capacity and energy d... Rechargeable aqueous zinc batteries have attracted much attention due to their high security, plentiful zinc resources, and environmental friendliness. However, it can only offer limited specific capacity and energy density based on ion insertion chemistry cathode. Herein, we design a low-cost and high-energy density aqueous Zn-S battery where the conversion cathode was fabricated by pitch-derived three-dimensional(3D) amorphous carbon encapsulated industrial-grade sulfur powder. The cost of the chemical substances for this aqueous Zn-S battery might be reduced to $9.38 per kW h based on the affordable cost of the raw ingredients. It is found that the PAC/S-60.33% cathode reveals excellent electrochemical performance, including a high reversible capacity(633.5 mAh g^(-1)at 0.5 A g^(-1)), high energy density(297.5 Wh kg^(-1)), an excellent rate capability(204.5 mAh g^(-1) at 5.5 A g^(-1)), as well as good cycling stability(180 mAh g^(-1)after 400 cycles at 5.0 A g^(-1)). Besides, the reaction mechanism of the cathode was investigated using ex-situ X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), and transmission electron microscope(TEM). It was demonstrated that the cathode undergoes a conversion reaction between S and Zn S. Furthermore, the discoveries also offer prospective possibilities to fabricate more secure and inexpensive battery systems. 展开更多
关键词 pitch 3D amorphous carbon sulfur-rich aqueous Zn-S batteries
原文传递
Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer 被引量:8
20
作者 Mingming Wang Yahan Meng +10 位作者 Ke Li Touqeer Ahmad Na Chen Yan Xu Jifei Sun Mingyan Chuai Xinhua Zheng Yuan Yuan Chunyue Shen ziqi zhang Wei Chen 《eScience》 2022年第5期509-517,共9页
Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness,environmental benignity and high safety.However,dendritic growth and chemical corrosion at the Zn anodes ... Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness,environmental benignity and high safety.However,dendritic growth and chemical corrosion at the Zn anodes limit their widespread applications.Here,we construct a Zn/Bi electrode via in-situ growth of a Bi-based energizer upon Zn metal surface using a replacement reaction.Experimental and theoretical calculations reveal that the Bi-based energizer composed of metallic Bi and ZnBi alloy contributes to Zn plating/stripping due to strong adsorption energy and fast ion transport rates.The resultant Zn/Bi electrode not only circumvents Zn dendrite growth but also improves Zn anode anti-corrosion performance.Specifically,the corrosion current of the Zn/Bi electrode is reduced by 90%compared to bare Zn.Impressively,an ultra-low overpotential of 12​mV and stable cycling for 4000​h are achieved in a Zn/Bi symmetric cell.A Zn–Cu/Bi asymmetric cell displays a cycle life of 1000 cycles,with an average Coulombic efficiency as high as 99.6%.In addition,an assembled Zn/Bi-activated carbon hybrid capacitor exhibits a stable life of more than 50,000 cycles,an energy density of 64​Wh kg−1,and a power density of 7​kW​kg−1.The capacity retention rate of a Zn/Bi–MnO_(2)full cell is improved by over 150%compared to a Zn–MnO_(2)cell without the Bi-based energizer.Our findings open a new arena for the industrialization of Zn metal batteries for large-scale energy storage applications. 展开更多
关键词 Aqueous Zn anode ANTI-CORROSION Replacement reaction Dendrite-free Bismuth-based energizer
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部