期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The activity of Zn precursors determines the cation exchange reaction kinetics with Ag_(2)S:Zn-doped Ag_(2)S or Ag_(2)S@ZnS QDs
1
作者 Zhiyong Tang Hongchao Yang +3 位作者 ziqiang sun Yejun Zhang Guangcun Chen Qiangbin Wang 《Nano Research》 SCIE EI CSCD 2023年第10期12315-12322,共8页
Cation exchange(CE)has been emerged as a promising post-synthesis strategy of colloidal nanocrystals.However,it is unclear how the cation precursor affects the CE process and the final colloidal nanocrystals.Herein,we... Cation exchange(CE)has been emerged as a promising post-synthesis strategy of colloidal nanocrystals.However,it is unclear how the cation precursor affects the CE process and the final colloidal nanocrystals.Herein,we utilized two Zn-B Lewis acidbase adduct complexes(B=oleylamine(OAM)and methanol(MeOH))as Zn precursors for CE with Ag_(2)S quantum dots(QDs).Our study revealed that the steric hindrance and complexing capabilities of Zn precursor significantly affect the CE kinetics.As a result,the Zn-doped Ag_(2)S(Zn:Ag_(2)S)and Ag_(2)S@ZnS core–shell QDs were successfully obtained with enormous enhancement of their photoluminescence(PL)intensities.Theoretical simulation showed that the Zn-OAM with higher desolvation energy and spatial hindrance tended to form doped Zn:Ag_(2)S QDs due to the inefficient cation exchange.Whereas the Zn-MeOH with lower exchange barrier promoted the conversion of Ag-S to Zn-S,thus forming Ag_(2)S@ZnS core–shell QDs.We anticipate that this finding will enrich the regulatory approaches of post-synthesis of colloidal nanocrystals with desirable properties. 展开更多
关键词 cation exchange Ag_(2)S quantum dots phase structure DESOLVATION coordination
原文传递
AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%:The effect of capping ligand chain length
2
作者 ziqiang sun Cheng Liu +5 位作者 Hongchao Yang Xiaohu Yang Yejun Zhang Hongzhen Lin Youyong Li Qiangbin Wang 《Nano Research》 SCIE EI CSCD 2022年第9期8555-8563,共9页
Surface ligands of colloidal quantum dots(QDs)have a profound influence on their surface states,which has been verified in the studies of the effect of ligand head groups on the photoluminescence(PL)properties of QDs.... Surface ligands of colloidal quantum dots(QDs)have a profound influence on their surface states,which has been verified in the studies of the effect of ligand head groups on the photoluminescence(PL)properties of QDs.However,the investigation of the ligand chain length is limited.Here,we systematically explored the effect of chain length on the Ag_(2)Se QDs by selecting three ligands,1-octanethiol(OTT),1-dodecanethiol(DDT),and 1-hexadecanethiol(HDT),with diverse chain lengths.We found that the PL intensity of Ag_(2)Se QDs increased with the decrease of the ligand chain length due to the enhanced passivation of surface defects emerging from the robust QD-ligand interface binding affinity and the weaker hydrophobic chain–chain interaction.Subsequently,AgAuSe QDs terminated with OTT were obtained by alloying parent OTT-Ag_(2)Se QDs with Au precursor with a record absolute PL quantum yield(PLQY)of 87.2%at 970 nm,facilitating ultrasensitive in vivo angiography imaging in a nude mouse model.We expect that our finding of the important role of the ligand chain length on the optical properties of QDs will be suggestive to the design and synthesis of high-quality QDs,and also look forward to the clinical applications of the ultra-bright AgAuSe QDs. 展开更多
关键词 quantum dots surface ligand ligand chain length photoluminescence quantum yield BIOIMAGING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部