期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A STOCHASTIC GALERKIN METHOD FOR MAXWELL EQUATIONS WITH UNCERTAINTY
1
作者 Lizheng CHENG Bo WANG ziqing xie 《Acta Mathematica Scientia》 SCIE CSCD 2020年第4期1091-1104,共14页
In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC exp... In this article,we investigate a stochastic Galerkin method for the Maxwell equations with random inputs.The generalized Polynomial Chaos(gPC)expansion technique is used to obtain a deterministic system of the gPC expansion coefficients.The regularity of the solution with respect to the random is analyzed.On the basis of the regularity results,the optimal convergence rate of the stochastic Galerkin approach for Maxwell equations with random inputs is proved.Numerical examples are presented to support the theoretical analysis. 展开更多
关键词 Maxwell equations random inputs stochastic Galerkin method gPC expansion convergence analysis
下载PDF
NONMONOTONE LOCAL MINIMAX METHODS FOR FINDING MULTIPLE SADDLE POINTS
2
作者 Wei Liu ziqing xie Wenfan Yi 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期851-884,共34页
In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to... In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly. 展开更多
关键词 Multiple saddle points Local minimax method Barzilai-Borwein gradient method Normalized nonmonotone search strategy Global convergence
原文传递
Normalized Wolfe-Powell-type local minimax method for finding multiple unstable solutions of nonlinear elliptic PDEs 被引量:1
3
作者 Wei Liu ziqing xie Wenfan Yi 《Science China Mathematics》 SCIE CSCD 2023年第10期2361-2384,共24页
The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The stee... The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions. 展开更多
关键词 semilinear elliptic PDE multiple unstable solution local minimax method normalized strong Wolfe-Powell-type search rule conjugate-gradient-type descent direction general descent direction global convergence
原文传递
SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS 被引量:18
4
作者 ziqing xie Zhimin Zhang 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第2期185-200,共16页
The convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a singularly perturbed model problem in one-dimensional setting are studied. By applying the DG method with appropriately... The convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a singularly perturbed model problem in one-dimensional setting are studied. By applying the DG method with appropriately chosen numerical traces, the existence and uniqueness of the DG solution, the optimal order L2 error bounds, and 2p+ 1-order superconvergence of the numerical traces are established. The numerical results indicate that the DG method does not produce any oscillation even under the uniform mesh. Numerical experiments demonstrate that, under the uniform mesh, it seems impossible to obtain the uniform superconvergence of the numerical traces. Nevertheless, thanks to the implementation of the so-called Shishkin-type mesh, the uniform 2p + 1-order superconvergence is observed numerically. 展开更多
关键词 Discontinuous Galerkin methods Singular perturbation Superconvergence Shishkin mesh Numerical traces
原文传递
Spectral Petrov-Galerkin Methods for the Second Kind Volterra Type Integro-Differential Equations 被引量:4
5
作者 Xia Tao ziqing xie Xiaojun Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2011年第2期216-236,共21页
This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate t... This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation.For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods,a rigorous error analysis in both L2_(ω^(α,β))^(2),and L^(∞)norms is given provided that both the kernel function and the source function are sufficiently smooth.Numerical experiments validate the theoretical prediction. 展开更多
关键词 Volterra integro-differential equation spectral Jacobi-Petrov-Galerkin pseudo-spectral Jacobi-Petrov-Galerkin spectral convergence
原文传递
计算半线性椭圆问题多解的一类谱Galerkin型搜索延拓法的收敛性分析 被引量:3
6
作者 刘伟 谢资清 袁永军 《中国科学:数学》 CSCD 北大核心 2021年第9期1407-1431,共25页
本文提出计算半线性椭圆边值问题多解的一类高效的谱Galerkin型搜索延拓法(SGSEM).该方法基于模型方程相应线性特征值问题的若干特征函数的线性组合构造多解初值,充分利用了传统搜索延拓法构造多解初值方面的优势.同时,采用插值系数Lege... 本文提出计算半线性椭圆边值问题多解的一类高效的谱Galerkin型搜索延拓法(SGSEM).该方法基于模型方程相应线性特征值问题的若干特征函数的线性组合构造多解初值,充分利用了传统搜索延拓法构造多解初值方面的优势.同时,采用插值系数Legendre-Galerkin谱方法离散模型问题,具有计算成本低、计算精度高的优点.运用Schauder不动点定理和其他技巧,本文严格证明了对应于每个特定真解的数值解的存在性以及限制在该真解一个充分小的邻域内的数值解的唯一性,并证明了其谱收敛性.数值结果验证了算法的可行性与高效性,并展示了不同类型的多解. 展开更多
关键词 半线性椭圆问题 多解 搜索延拓法 插值系数谱方法 谱收敛性 SCHAUDER不动点定理
原文传递
SUPER-GEOMETRIC CONVERGENCE OF A SPECTRAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH JUMP COEFFICIENTS 被引量:1
7
作者 Lin Wang ziqing xie Zhimin Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2010年第3期418-428,共11页
We propose and analyze a C^0 spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise con... We propose and analyze a C^0 spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is established for a simplified model. 展开更多
关键词 EIGENVALUE Spectral method COLLOCATION Galerkin finite element method.
原文传递
Implicit DG Method for Time Domain Maxwell’s Equations Involving Metamaterials 被引量:1
8
作者 Jiangxing Wang ziqing xie Chuanmiao Chen 《Advances in Applied Mathematics and Mechanics》 SCIE 2015年第6期796-817,共22页
An implicit discontinuous Galerkin method is introduced to solve the timedomain Maxwell’s equations in metamaterials.The Maxwell’s equations in metamaterials are represented by integral-differential equations.Our sc... An implicit discontinuous Galerkin method is introduced to solve the timedomain Maxwell’s equations in metamaterials.The Maxwell’s equations in metamaterials are represented by integral-differential equations.Our scheme is based on discontinuous Galerkin method in spatial domain and Crank-Nicolson method in temporal domain.The fully discrete numerical scheme is proved to be unconditionally stable.When polynomial of degree at most p is used for spatial approximation,our scheme is verified to converge at a rate of O(τ^(2)+h^(p)+1/2).Numerical results in both 2D and 3D are provided to validate our theoretical prediction. 展开更多
关键词 Maxwell’s equations METAMATERIALS fully disctete DG method L2-stability L2-error estimate.
原文传递
A New Triangular Spectral Element Method II: Mixed Formulation and hp-Error Estimates
9
作者 Bingzhen Zhou Bo Wang +1 位作者 Li-Lian Wang ziqing xie 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2019年第1期72-97,共26页
Mixed triangular spectral element method using nodal basis on unstructured meshes is investigated in this paper.The method is based on equivalent first order system of the elliptic problem and rectangle-triangle trans... Mixed triangular spectral element method using nodal basis on unstructured meshes is investigated in this paper.The method is based on equivalent first order system of the elliptic problem and rectangle-triangle transforms.It fully enjoys the ten-sorial structure and flexibility in handling complex domains by using nodal basis and unstructured triangular mesh.Different from the usual Galerkin formulation,the mixed form is particularly advantageous in this context,since it can avoid the singularity in-duced by the rectangle-triangle transform in the calculation of the matrices,and does not require the evaluation of the stiffness matrix.An hp a priori error estimate is pres-ented for the proposed method.The implementation details and some numerical exam-ples are provided to validate the accuracy and flexibility of the method. 展开更多
关键词 Triangular spectral element method hp error analysis mixed form interpolation error in H^(1)-norm
原文传递
Space-Time Discontinuous GalerkinMethod for Maxwell’s Equations
10
作者 ziqing xie Bo Wang Zhimin Zhang 《Communications in Computational Physics》 SCIE 2013年第9期916-939,共24页
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell’s equations.Distinguished from the Runge-Kutta discontinuous Galerkin method(RKDG)and the finite element time domain met... A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell’s equations.Distinguished from the Runge-Kutta discontinuous Galerkin method(RKDG)and the finite element time domain method(FETD),in our scheme,discontinuous Galerkinmethods are used to discretize not only the spatial domain but also the temporal domain.The proposed numerical scheme is proved to be unconditionally stable,and a convergent rate O((△t)^(r+1)+h^(k+1/2))is established under the L^(2)-normwhen polynomials of degree atmost r and k are used for temporal and spatial approximation,respectively.Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction.An ultra-convergence of order(△t)^(2r+1) in time step is observed numerically for the numerical fluxes w.r.t.temporal variable at the grid points. 展开更多
关键词 Discontinuous Galerkin method Maxwell’s equations full-discretization L2-error estimate L2-stability ultra-convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部