This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essenti...This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essential for transmission efficiency and privacy preservation in the Io V. Nevertheless, the MAC protocol and pseudonym scheme are usually studied separately, in which a new MAC layer semantic linking attack could be carried out by analyzing the vehicles' transmission patterns even if they change pseudonyms simultaneously. This paper presents a hierarchical architecture named as the software defined Internet of Vehicles(SDIV). Facilitated by the architecture, a MAC layer aware pseudonym(MAP) scheme is proposed to resist the new attack. In the MAP, RSU clouds coordinate vehicles to change their transmission slots and pseudonyms simultaneously in the mix-zones by measuring the privacy level quantitatively. Security analysis and extensive simulations are conducted to show that the scheme provides reliable safety message broadcasting, improves the location privacy and network throughput in the Io V.展开更多
基金supported by key special project of National Key Research and Development Program (2017YFC0803900)
文摘This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essential for transmission efficiency and privacy preservation in the Io V. Nevertheless, the MAC protocol and pseudonym scheme are usually studied separately, in which a new MAC layer semantic linking attack could be carried out by analyzing the vehicles' transmission patterns even if they change pseudonyms simultaneously. This paper presents a hierarchical architecture named as the software defined Internet of Vehicles(SDIV). Facilitated by the architecture, a MAC layer aware pseudonym(MAP) scheme is proposed to resist the new attack. In the MAP, RSU clouds coordinate vehicles to change their transmission slots and pseudonyms simultaneously in the mix-zones by measuring the privacy level quantitatively. Security analysis and extensive simulations are conducted to show that the scheme provides reliable safety message broadcasting, improves the location privacy and network throughput in the Io V.