Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperatu...Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperature annealing,the phase of nickel-silicon compound can be observed with X-ray diffraction,and the contact resistance also changes.A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing.It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing,resulting in a better ohmic-contact characteristic.展开更多
The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It...The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1 3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.展开更多
Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and b...Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions.展开更多
Analysis of the short-circuit characteristics of SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)is very important for their practical application.This paper studies the SiC MOSFET short-circuit charact...Analysis of the short-circuit characteristics of SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)is very important for their practical application.This paper studies the SiC MOSFET short-circuit characteristics with an improved test setup under different conditions.A high-current Si insulated gate bipolar transistor is used as a circuit breaker in the test circuit rather than the usual short-circuit test conducted without a circuit breaker.The test platform with a circuit breaker does not influence the calculation results regarding the shortcircuitwithstand time and energy,but the SiCMOSFETwill switch off after failure in a very short time.In addition,the degree of failure will be limited and confined to a small area,such that the damage to the chip will be clearly observable,which is significant for short-circuit failure analysis.展开更多
Summary What is already known about this topic?Scrub typhus(ST)causes public health challenges in the“tsutsugamushi triangle”in the Asia-Pacific area greater than 13 million square kilometers,affecting an estimated ...Summary What is already known about this topic?Scrub typhus(ST)causes public health challenges in the“tsutsugamushi triangle”in the Asia-Pacific area greater than 13 million square kilometers,affecting an estimated one million people each year.What is added by this report?A retrospective study based on 4,501 hospitalized patients with ST in Guangzhou City,China,described the epidemiological and clinical characteristics,laboratory findings of ST.展开更多
The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2)...The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2) level.However,the Ca^(2+) vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the thermal sensitivity.Here,the up-conversion luminescence and thermometric performance of Er^(3+),Yb^(3+) dopedBa_(2)CaWO_(6) are tuned by tri-doping with alkaline ions.The Ca^(2+) vacancy defect can be eliminated by the introduction of Na^(+),which occupies the Ca^(2+) site when it is doped into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+).On the contrary,the doping of Cs^(+) into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+) enhances the defect concentration because it occupies the site of Ba^(2+).Thus,the tri-doping of Na^(+) reduces the non-radiative probability and enhances the quantum efficiency of Er^(3+),leading to the improvement of the thermometric sensitivity of Ba_(2)CaWO_(6).As a result,we get an excellent thermometric Ba_(2)CaWO_(6):8%Yb^(3+),3.5%Er^(3+),6%Na^(+) powder with a luminescence lifetime of 515 μs and maximum thermal sensitivity(S_(r)) of 1.45%/K,which is more than three times higher than that of the BCWO:Er^(3+) powder.展开更多
Due to manufacturing variation,battery cells often possess heterogeneous characteristics,leading to battery state-of-charge variation in real-time.Since the lowest cell state-of-charge determines the useful life of ba...Due to manufacturing variation,battery cells often possess heterogeneous characteristics,leading to battery state-of-charge variation in real-time.Since the lowest cell state-of-charge determines the useful life of battery pack,such variation can negatively impact the battery performance and electric vehicles range.Existing research has been focused on control design to mitigate cell imbalance.However,it is yet unclear how much impacts the cell imbalance can have on electric vehicle range.This paper closes this knowledge gap by using a simulation environment consisting of real-world driving speed data,vehicle longitudinal control,propulsion and vehicle dynamics,and cell level battery modeling.In particular,each battery cell is modeled as an equivalent circuit model,and variations among cell parameters are introduced to assess their impact on electric vehicles range and to identify the most influential parameter variations.Simulation results and analysis can be used to assist balancing control design and to benchmark control performance.展开更多
基金supported by Shenzhen Science and Technology Program(Grant No.KQTD2017033016491218).
文摘Nickel is an excellent ohmic-contact metal on 4H-SiC.This paper discusses the formation mechanism of nickel ohmic contact on 4HSiC by assessing the electrical properties and microstructural change.Under high-temperature annealing,the phase of nickel-silicon compound can be observed with X-ray diffraction,and the contact resistance also changes.A comparative experiment was designed to use X-ray diffraction and energy-dispersive spectroscopy to clarify the difference of ohmic-contact material composition and elemental analysis between samples prepared using pulsed laser annealing and rapid thermal annealing.It is found that more Ni2Si and carbon vacancies formed at the interface in the sample prepared using pulsed laser annealing,resulting in a better ohmic-contact characteristic.
基金supported by the National Natural Science Foundation of China, No. 30772229the National Basic Research Program of China (973 Program), No. 2005CB522600the Science Foundation of Tianjin Bureau of Public Health, No. 2011KZ96
文摘The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1 3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52005416,51735012,and 51825504)the Sichuan Science and Technology Program(Grant No.2020YJ0213)+1 种基金the Fundamental Research Funds for the Central Universities,SWJTU(Grant No.2682021CX091)the State Key Laboratory of Traction Power(Grant No.2020TPL-T 11).
文摘Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions.
基金This work was supported by the Shenzhen Science and Technology Program[Grant No.KQTD2017033016491218].
文摘Analysis of the short-circuit characteristics of SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)is very important for their practical application.This paper studies the SiC MOSFET short-circuit characteristics with an improved test setup under different conditions.A high-current Si insulated gate bipolar transistor is used as a circuit breaker in the test circuit rather than the usual short-circuit test conducted without a circuit breaker.The test platform with a circuit breaker does not influence the calculation results regarding the shortcircuitwithstand time and energy,but the SiCMOSFETwill switch off after failure in a very short time.In addition,the degree of failure will be limited and confined to a small area,such that the damage to the chip will be clearly observable,which is significant for short-circuit failure analysis.
基金The Natural Science Foundation of China(81825019 to WL,81722041 to HL)the China Mega-project for Infectious Diseases(2018ZX10713002 to WL)+1 种基金the Science and Technology Plan Grant of Guangzhou(202102080035 to YHW)the Key Research and Development Program of China(2019YFC1200604 to LQF).
文摘Summary What is already known about this topic?Scrub typhus(ST)causes public health challenges in the“tsutsugamushi triangle”in the Asia-Pacific area greater than 13 million square kilometers,affecting an estimated one million people each year.What is added by this report?A retrospective study based on 4,501 hospitalized patients with ST in Guangzhou City,China,described the epidemiological and clinical characteristics,laboratory findings of ST.
基金Project supported by the National Natural Science Foundation of China (51972061,22109025,22171045,52072076)。
文摘The Er3+doped double perovskite Ba_(2)CaWO_(6) crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from ^(2)H_(11/2) and ^(4)S_(3/2) to the lowered ^(4)I_(15/2) level.However,the Ca^(2+) vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the thermal sensitivity.Here,the up-conversion luminescence and thermometric performance of Er^(3+),Yb^(3+) dopedBa_(2)CaWO_(6) are tuned by tri-doping with alkaline ions.The Ca^(2+) vacancy defect can be eliminated by the introduction of Na^(+),which occupies the Ca^(2+) site when it is doped into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+).On the contrary,the doping of Cs^(+) into Ba_(2)CaWO_(6) with Er^(3+) and Yb^(3+) enhances the defect concentration because it occupies the site of Ba^(2+).Thus,the tri-doping of Na^(+) reduces the non-radiative probability and enhances the quantum efficiency of Er^(3+),leading to the improvement of the thermometric sensitivity of Ba_(2)CaWO_(6).As a result,we get an excellent thermometric Ba_(2)CaWO_(6):8%Yb^(3+),3.5%Er^(3+),6%Na^(+) powder with a luminescence lifetime of 515 μs and maximum thermal sensitivity(S_(r)) of 1.45%/K,which is more than three times higher than that of the BCWO:Er^(3+) powder.
文摘Due to manufacturing variation,battery cells often possess heterogeneous characteristics,leading to battery state-of-charge variation in real-time.Since the lowest cell state-of-charge determines the useful life of battery pack,such variation can negatively impact the battery performance and electric vehicles range.Existing research has been focused on control design to mitigate cell imbalance.However,it is yet unclear how much impacts the cell imbalance can have on electric vehicle range.This paper closes this knowledge gap by using a simulation environment consisting of real-world driving speed data,vehicle longitudinal control,propulsion and vehicle dynamics,and cell level battery modeling.In particular,each battery cell is modeled as an equivalent circuit model,and variations among cell parameters are introduced to assess their impact on electric vehicles range and to identify the most influential parameter variations.Simulation results and analysis can be used to assist balancing control design and to benchmark control performance.