Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ...Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.展开更多
AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan...AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.展开更多
Autophagy plays an important role in the development and pathogenesis of various diseases. It can be induced by a variety of events such as hypoxia, nutrient-starvation, and mechanical damage. Many neurological disord...Autophagy plays an important role in the development and pathogenesis of various diseases. It can be induced by a variety of events such as hypoxia, nutrient-starvation, and mechanical damage. Many neurological disorders such Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, cerebral ischemia, and acute spinal cord injury (ASCI), are closely related to autophagy. However, therapeutic strategies to manipulate autophagy have not yet been fully deciphered due to the limited knowledge of the molecular mechanisms underlying autophagy in these disorders.展开更多
Safe,inexpensive aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices.However,they still face issues,including dissolution and collapse of the cathode as well as H_(2)evolution and the gro...Safe,inexpensive aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices.However,they still face issues,including dissolution and collapse of the cathode as well as H_(2)evolution and the growth of Zn dendrites on the Zn anode.Herein,we simultaneously regulate the cations and anions in the electrolyte for high-capacity,high-stability aqueous zinc–vanadium(Zn–V)batteries based on a bimetallic cation-doped Na_(0.33)K_(0.1)V_(2)O_(5)·nH_(2)O cathode.We demonstrate that Na^(+) cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect.We also illustrate that ClO_(4)^(-) anions participate in energy storage at the cathode and are reduced to Cl^(-),generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H_(2)evolution during long-term cycling.When Na^(+) and ClO_(4)^(-) are introduced into an aqueous ZnSO_(4) electrolyte,a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 h at a current density of 1 mA cm^(-2) and with an area capacity of 1 mAh cm^(-2).Zn/Na_(0.33)K_(0.1)V_(2)O_(5)·nH_(2)O full batteries exhibit a high capacity of 600 mAh g^(-1)at 0.1 A g^(-1) and long-term cycling performance for 5000 cycles,with a capacity of 200 mAh g^(-1) at 20 Ag^(-1).展开更多
基金supported by the National Natural Science Foundation of China,Nos.82071376(to ZC)and 82001471(to CJ)the Natural Science Foundation of Shanghai,No.20ZR1410500(to ZC).
文摘Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
基金supported by National Natural Science Foundation of China(Nos.51802356,51872334,and 51572299)Innovation-Driven Project of Central South University(No.2018CX004)
文摘AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.
基金supported by the National Natural Science Foundation of China (81301047)
文摘Autophagy plays an important role in the development and pathogenesis of various diseases. It can be induced by a variety of events such as hypoxia, nutrient-starvation, and mechanical damage. Many neurological disorders such Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, cerebral ischemia, and acute spinal cord injury (ASCI), are closely related to autophagy. However, therapeutic strategies to manipulate autophagy have not yet been fully deciphered due to the limited knowledge of the molecular mechanisms underlying autophagy in these disorders.
基金supported by the National Natural Science Foundation of China(Grant no.52072411,51932011)Natural Science Foundation of Hunan Province(Grant no.2021JJ20060,2018RS3019,and 2019JJ30033)+1 种基金the Science and Technology Innovation Program of Hunan Province(Grant no.2021RC3001)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0089).
文摘Safe,inexpensive aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices.However,they still face issues,including dissolution and collapse of the cathode as well as H_(2)evolution and the growth of Zn dendrites on the Zn anode.Herein,we simultaneously regulate the cations and anions in the electrolyte for high-capacity,high-stability aqueous zinc–vanadium(Zn–V)batteries based on a bimetallic cation-doped Na_(0.33)K_(0.1)V_(2)O_(5)·nH_(2)O cathode.We demonstrate that Na^(+) cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect.We also illustrate that ClO_(4)^(-) anions participate in energy storage at the cathode and are reduced to Cl^(-),generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H_(2)evolution during long-term cycling.When Na^(+) and ClO_(4)^(-) are introduced into an aqueous ZnSO_(4) electrolyte,a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 h at a current density of 1 mA cm^(-2) and with an area capacity of 1 mAh cm^(-2).Zn/Na_(0.33)K_(0.1)V_(2)O_(5)·nH_(2)O full batteries exhibit a high capacity of 600 mAh g^(-1)at 0.1 A g^(-1) and long-term cycling performance for 5000 cycles,with a capacity of 200 mAh g^(-1) at 20 Ag^(-1).