Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two laye...Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two layers, one can modulate their electronic band structures and therefore the associated electrical transport and optical properties, which are distinct from the original ones of each individual layer. These new properties excite great passion in the exploration of new quantum states and possible applications of 2D bilayers. In this article, we will mainly review the prevailing fabrication methods and emerging physical properties of twisted bilayer materials and lastly give out a perspective of this topic.展开更多
Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterizatio...Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0300903 and 2016YFA0300804)National Equipment Program of China(Grant No.ZDYZ2015-1)+3 种基金Beijing Graphene Innovation Program,China(Grant No.Z181100004818003)Beijing Municipal Science&Technology Commission,China(Grant No.Z181100004218006)Bureau of Industry and Information Technology of Shenzhen,China(Graphene platform contract No.201901161512)the Key R&D Program of Guangdong Province,China(Grant No.2019B010931001)
文摘Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two layers, one can modulate their electronic band structures and therefore the associated electrical transport and optical properties, which are distinct from the original ones of each individual layer. These new properties excite great passion in the exploration of new quantum states and possible applications of 2D bilayers. In this article, we will mainly review the prevailing fabrication methods and emerging physical properties of twisted bilayer materials and lastly give out a perspective of this topic.
基金Project supported by Beijing Natural Science Foundation,China(Grant No.JQ19004)Beijing Excellent Talents Training Support,China(Grant No.2017000026833ZK11)+8 种基金the National Natural Science Foundation of China(Grant Nos.52025023,51991340,and 51991342)the National Key Research and Development Program of China(Grant Nos.2016YFA0300903 and 2016YFA0300804)the Key R&D Program of Guangdong Province,China(Grant Nos.2019B010931001,2020B010189001,2018B010109009,and 2018B030327001)the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100007219005)the Beijing Graphene Innovation Program(Grant No.Z181100004818003)Bureau of Industry and Information Technology of Shenzhen(Graphene platform 201901161512)Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06D348)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.KYTDPT20181011104202253)the China Postdoctoral Science Foundation(Grant No.2020M680177)。
文摘Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.