Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unpre- cedented energy crisis. Nickel-iron layered double...Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unpre- cedented energy crisis. Nickel-iron layered double hydroxides (NiFe-LDHs) with specific interlayer anions (i.e. phosphate, phosphite, and hypophosphite) were fabricated by a co-predpitation method and investigated as oxygen evolution electrocatalysts. Intercalation of the phosphorus oxoanion enhanced the OER activity in an alkaline solution; the optimal performance (i.e., a low onset potential of 215 mV, a small Tafel slope of 37.7 mV/dec, and stable electrochemical behavior) was achieved with the hypophosphite-intercalated NiFe-LDH catalyst, demonstrating dramatic enhancement over the traditional carbonate-intercalated NiFe-LDH in terms of activity and durability. This enhanced performance is attributed to the interaction between the intercalated phosphorous oxoanions and the edge-sharing MO6 (M = Ni, Fe) layers, which modifies the surface electronic structure of the Ni sites. This concept should be inspiring for the design of more effective LDH-based oxygen evolution electrocatalvsts.展开更多
Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into ...Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cell- killing efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.展开更多
The careful design of nano-architectures and smart hybridization of expected active materials can lead to more advanced properties. Here we have engineered a novel hierarchical branching Cu/Cu2O/CuO heteronanostructur...The careful design of nano-architectures and smart hybridization of expected active materials can lead to more advanced properties. Here we have engineered a novel hierarchical branching Cu/Cu2O/CuO heteronanostructure by combining a facile hydrothermal method and subsequent controlled oxidation process. The fine structure and epitaxial relationship between the branches and backbone are investigated by high-resolution transmission electron microscopy. Moreover, the evolution of the branch growth has also been observed during the gradual oxidation of the Cu nanowire surface. The experimental results suggest that the surface oxidation needs to be performed via a two-step exposure process to varying humidity in order to achieve optimized formation of a core-shell structured branching architecture. Finally, a proof-of-concept of the function of such a hierarchical framework as the anode material in lithium-ion batteries is demonstrated. The branching core-shell heterostructure improves battery performance by several means: (i) The epitaxially grown branches provide a high surface area for enhanced electrolyte accessibility and high resistance to volume change induced by Li^+ intercalation/extraction; (ii) the core-shell structure with its well-defined heterojunction increases the contact area which facilitates effective charge transport during lithiation; (iii) the copper core acts as a current collector as well as providing structural reinforcement.展开更多
Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performanc...Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performance for the photocatalytic H2 evolution and photo- degradation of rhodamine B,as compared to their solid counterparts,which could be ascribed to the peculiar porous nanostructure.展开更多
文摘Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unpre- cedented energy crisis. Nickel-iron layered double hydroxides (NiFe-LDHs) with specific interlayer anions (i.e. phosphate, phosphite, and hypophosphite) were fabricated by a co-predpitation method and investigated as oxygen evolution electrocatalysts. Intercalation of the phosphorus oxoanion enhanced the OER activity in an alkaline solution; the optimal performance (i.e., a low onset potential of 215 mV, a small Tafel slope of 37.7 mV/dec, and stable electrochemical behavior) was achieved with the hypophosphite-intercalated NiFe-LDH catalyst, demonstrating dramatic enhancement over the traditional carbonate-intercalated NiFe-LDH in terms of activity and durability. This enhanced performance is attributed to the interaction between the intercalated phosphorous oxoanions and the edge-sharing MO6 (M = Ni, Fe) layers, which modifies the surface electronic structure of the Ni sites. This concept should be inspiring for the design of more effective LDH-based oxygen evolution electrocatalvsts.
文摘Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cell- killing efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.
基金We thank Prof. Mingbo Wu (State Key Laboratory of Heavy Oil Processing, China University of Petroleum) for his help in experiments. This work was finandally supported by the Key Joint Foundation of PetroChina, the National Natural Science Foundation of China (Nos. 51271215, U1362202, and 21106185) and the PetroChina Key Programs on Oil Refinery Catalysts (No. 2010E-1908 and 2010E-1903).
文摘The careful design of nano-architectures and smart hybridization of expected active materials can lead to more advanced properties. Here we have engineered a novel hierarchical branching Cu/Cu2O/CuO heteronanostructure by combining a facile hydrothermal method and subsequent controlled oxidation process. The fine structure and epitaxial relationship between the branches and backbone are investigated by high-resolution transmission electron microscopy. Moreover, the evolution of the branch growth has also been observed during the gradual oxidation of the Cu nanowire surface. The experimental results suggest that the surface oxidation needs to be performed via a two-step exposure process to varying humidity in order to achieve optimized formation of a core-shell structured branching architecture. Finally, a proof-of-concept of the function of such a hierarchical framework as the anode material in lithium-ion batteries is demonstrated. The branching core-shell heterostructure improves battery performance by several means: (i) The epitaxially grown branches provide a high surface area for enhanced electrolyte accessibility and high resistance to volume change induced by Li^+ intercalation/extraction; (ii) the core-shell structure with its well-defined heterojunction increases the contact area which facilitates effective charge transport during lithiation; (iii) the copper core acts as a current collector as well as providing structural reinforcement.
基金financially supported by the National Natural Science Foundation of China (51271215 and 21601133)Sinopec Innovation Scheme (A-381)
文摘Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performance for the photocatalytic H2 evolution and photo- degradation of rhodamine B,as compared to their solid counterparts,which could be ascribed to the peculiar porous nanostructure.