Solid-state Li metal battery has attracted increasing interests for its potentiallyhigh energy density and excellent safety assurance, which is a promising candidatefor next generation battery system. However, the low...Solid-state Li metal battery has attracted increasing interests for its potentiallyhigh energy density and excellent safety assurance, which is a promising candidatefor next generation battery system. However, the low ionic conductivityand Li^(+) transport number of solid-state polymer electrolytes limit their practicalapplication. Herein, a composite polymer electrolyte with self-insertedstructure is proposed using the layered double hydroxides (LDHs) as dopant toachieve a fast Li^(+) transport channel in poly(vinylidene-co-trifluoroethylene) [P(VDF-TrFE)] based polymer electrolyte. In such a composite electrolyte, P(VDF-TrFE) polymer has an all-trans conformation, in which all fluorineatoms locate on one side of the polymer chain, providing fast Li^(+) transporthighways. Meanwhile, the LDH can immobilize the anions of Li salts based onthe electrostatic interactions, promoting the dissociation of Li salts, therebyenhancing the ionic conductivity (6.4 × 10^(-4) S cm^(-1)) and Li^(+) transferencenumber (0.76). The anion immobilization effect can realize uniform electricfield distribution at the anode surface and suppress the dendritic Li growth.Moreover, the hydrogen bonding interaction between LDH and polymerchains also endows the composite electrolyte with strong mechanical properties.Thus, at room temperature, the Li jj Li symmetric cells can be stablycycled over 1000 h at a current density of 0.2 mA cm^(-2), and the full cells withLiFePO_(4) cathode deliver a high capacity retention (>95%) after 200 cycles. This work offers a promising route to construct solid-state polymer electrolytes withfast Li^(+) transport.展开更多
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp...Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52071227Beijing Natural Science Foundation-Xiaomi Innovation Joint Foundation,Grant/Award Number:L223011+6 种基金Key Scientific Research Project in Shanxi Province,Grant/Award Number:201805D121003Special Found Projects for Central Government Guidance to Local Science and Technology Development,Science and Technology Major Projects of Shanxi Province,Grant/Award Number:20191102004Young Elite Scientists Sponsorship Program,Grant/Award Number:CAST(2022QNRC001)Fundamental Research Program of Shanxi Province,Grant/Award Number:202103021222006Shanxi Energy Internet Research Institute,Grant/Award Number:SXEI2023A004Shanxi Scholarship Council of China,Grant/Award Number:HGKY2019085Open Research Fund of Guangdong Advanced Carbon Materials Co.,Ltd,Grant/Award Number:Kargen-2024B0905。
文摘Solid-state Li metal battery has attracted increasing interests for its potentiallyhigh energy density and excellent safety assurance, which is a promising candidatefor next generation battery system. However, the low ionic conductivityand Li^(+) transport number of solid-state polymer electrolytes limit their practicalapplication. Herein, a composite polymer electrolyte with self-insertedstructure is proposed using the layered double hydroxides (LDHs) as dopant toachieve a fast Li^(+) transport channel in poly(vinylidene-co-trifluoroethylene) [P(VDF-TrFE)] based polymer electrolyte. In such a composite electrolyte, P(VDF-TrFE) polymer has an all-trans conformation, in which all fluorineatoms locate on one side of the polymer chain, providing fast Li^(+) transporthighways. Meanwhile, the LDH can immobilize the anions of Li salts based onthe electrostatic interactions, promoting the dissociation of Li salts, therebyenhancing the ionic conductivity (6.4 × 10^(-4) S cm^(-1)) and Li^(+) transferencenumber (0.76). The anion immobilization effect can realize uniform electricfield distribution at the anode surface and suppress the dendritic Li growth.Moreover, the hydrogen bonding interaction between LDH and polymerchains also endows the composite electrolyte with strong mechanical properties.Thus, at room temperature, the Li jj Li symmetric cells can be stablycycled over 1000 h at a current density of 0.2 mA cm^(-2), and the full cells withLiFePO_(4) cathode deliver a high capacity retention (>95%) after 200 cycles. This work offers a promising route to construct solid-state polymer electrolytes withfast Li^(+) transport.
基金Natural Science Research(Department of Education)Project of Higher Education Institutions in Guangdong Province(Grant No.2018KQNCX063)Applied Basic Research Fund of Guangdong Province(Grant No.2024B1515020071)+1 种基金National Natural Science Foundation of China(Grant Nos.52371217 and 52150410411)Guangdong Provincial Science and Technology Plan Project(Grant No.2023A0505020009)。
文摘Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.