This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial...This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial Vehicles(multi-UAV). The DISOMP algorithm can be divided into four modules: a search module designed based on the distributed Ant Colony Optimization(ACO) algorithm, an attack module designed based on the Parallel Approach(PA)scheme, a threat avoidance module designed based on the Dubins Curve(DC) and a communication module designed for information exchange among the multi-UAV system and the dynamic environment. A series of simulations of multi-UAV searching and attacking the moving targets are carried out, in which the search-attack mission completeness, execution efficiency and system suitability of the DISOMP algorithm are analyzed. The simulation results exhibit that the DISOMP algorithm based on online distributed down-top strategy is characterized by good flexibility, scalability and adaptability, in the dynamic targets searching and attacking problem.展开更多
Purpose-The purpose of this paper is to meet the large demand for the new-generation intelligence monitoring systems that are used to detect targets within a dynamic background.Design/methodology/approach-A dynamic ta...Purpose-The purpose of this paper is to meet the large demand for the new-generation intelligence monitoring systems that are used to detect targets within a dynamic background.Design/methodology/approach-A dynamic target detection method based on the fusion of optical flow and neural network is proposed.Findings-Simulation results verify the accuracy of the moving object detection based on optical flow andneural network fusion.Themethod eliminates the influence caused bythe movement of thecamera to detect the target and has the ability to extract a complete moving target.Practical implications-It provides a powerful safeguard for target detection and targets the tracking application.Originality/value-The proposed method represents the fusion of optical flow and neural network to detect the moving object,and it can be used in new-generation intelligent monitoring systems.展开更多
This paper primarily focuses on the obstacle avoidance issue of followers in unmanned aerial vehicle(UAV)formation flight while considering formation constraints.Based on consensus theory and the artificial potential ...This paper primarily focuses on the obstacle avoidance issue of followers in unmanned aerial vehicle(UAV)formation flight while considering formation constraints.Based on consensus theory and the artificial potential field(APF)principle,a new fusion UAV formation control algorithm is proposed.The method employs a formation control strategy that combines the leader-following method and the virtual structure method,enabling the generation,maintenance and transformation of the formation through the utilization of a consensus controller.In response to the specific problem of the follower within the formation entering the no-fly zone and the self-collision among UAVs,APF-based formation path replanning and self-collision prevention algorithms are introduced.The simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
基金supported in part by National Natural Science Foundation of China (Nos. 61741313, 61673209, and 61533008)Jiangsu Six Peak of Talents Program, China (No. KTHY-027)Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No. KYCX18_0303)
文摘This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial Vehicles(multi-UAV). The DISOMP algorithm can be divided into four modules: a search module designed based on the distributed Ant Colony Optimization(ACO) algorithm, an attack module designed based on the Parallel Approach(PA)scheme, a threat avoidance module designed based on the Dubins Curve(DC) and a communication module designed for information exchange among the multi-UAV system and the dynamic environment. A series of simulations of multi-UAV searching and attacking the moving targets are carried out, in which the search-attack mission completeness, execution efficiency and system suitability of the DISOMP algorithm are analyzed. The simulation results exhibit that the DISOMP algorithm based on online distributed down-top strategy is characterized by good flexibility, scalability and adaptability, in the dynamic targets searching and attacking problem.
基金This work was supported by the National Natural Science Foundation of China(No.61304223,No.61673209 and No.61533008)the Fundamental Research Funds for the Central Universities(No.NZ2015206 and No.NJ20160026).
文摘Purpose-The purpose of this paper is to meet the large demand for the new-generation intelligence monitoring systems that are used to detect targets within a dynamic background.Design/methodology/approach-A dynamic target detection method based on the fusion of optical flow and neural network is proposed.Findings-Simulation results verify the accuracy of the moving object detection based on optical flow andneural network fusion.Themethod eliminates the influence caused bythe movement of thecamera to detect the target and has the ability to extract a complete moving target.Practical implications-It provides a powerful safeguard for target detection and targets the tracking application.Originality/value-The proposed method represents the fusion of optical flow and neural network to detect the moving object,and it can be used in new-generation intelligent monitoring systems.
基金supported by the National Natural Science Foundation of China(61973158)Forward-Looking Layout of Scientific Research Projects of NUAA(1003-ILA22064)。
文摘This paper primarily focuses on the obstacle avoidance issue of followers in unmanned aerial vehicle(UAV)formation flight while considering formation constraints.Based on consensus theory and the artificial potential field(APF)principle,a new fusion UAV formation control algorithm is proposed.The method employs a formation control strategy that combines the leader-following method and the virtual structure method,enabling the generation,maintenance and transformation of the formation through the utilization of a consensus controller.In response to the specific problem of the follower within the formation entering the no-fly zone and the self-collision among UAVs,APF-based formation path replanning and self-collision prevention algorithms are introduced.The simulation results demonstrate the effectiveness of the proposed algorithm.