Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distrib...Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distributions of the total seismic hazard and background seismic hazard in this area.The Bayesian delaunay tessellation smoothing method put forward by Ogata was used to calculate the spatial distributions of b-value.The results show that seismic hazards in Sichuan-Yunan region are high,and areas with relatively high hazard values are distributed along the main faults,while seismic hazards in Sichuan basin are relatively low.展开更多
Walkaway VSP technology is commonly seen in the seismic development stage in the middle and late stages of the oilfield.Its advantage over conventional zero-offset VSP and non-zero well-source distance VSP is mainly d...Walkaway VSP technology is commonly seen in the seismic development stage in the middle and late stages of the oilfield.Its advantage over conventional zero-offset VSP and non-zero well-source distance VSP is mainly due to the higher coverage of the Walkaway VSP acquisition process and the larger acquisition range.The resolution and signal-to-noise ratio are higher.Walkaway VSP technology has a very good application effect on solving complex structural problems and thin interbed reservoir problems.This paper mainly introduces a VSP constrained sparse spike inversion method based on high-precision VSP data.For the data acquired by the eight-azimuth Walkaway VSP in a work area of Bohai Gulf,a new method of 3D seismic-VSP joint seismic inversion is established.In the application of the actual work area,good inversion results based on Walkaway VSP data were obtained,and a new R24 small layer above the top boundary of the NmRIll oil group was depicted.This result meets the needs of development seismic technology and is used to solve thin interbed reservoirs exploration problems that have very important practical significance.展开更多
Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic ear...Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.展开更多
基金Ningxia Hui Autonomous Region Key R&D Plan East West cooperation Project(No.2018BFG02011)National Natural Science Foundation of China(No.41674047)China Earthquake Science Experiment Site Project,CEA(Nos.2019CSES0105 and 2019CSES0106).
文摘Based on the modern earthquake catalogue,the incomplete centroidal voronoi tessellation(ICVT)method was used in this study to estimate the seismic hazard in Sichuan-Yunnan region of China.We calculated spatial distributions of the total seismic hazard and background seismic hazard in this area.The Bayesian delaunay tessellation smoothing method put forward by Ogata was used to calculate the spatial distributions of b-value.The results show that seismic hazards in Sichuan-Yunan region are high,and areas with relatively high hazard values are distributed along the main faults,while seismic hazards in Sichuan basin are relatively low.
基金supported by the Natural Science Foundation of China(41974124)the China Scholarship Council(201906440068).
文摘Walkaway VSP technology is commonly seen in the seismic development stage in the middle and late stages of the oilfield.Its advantage over conventional zero-offset VSP and non-zero well-source distance VSP is mainly due to the higher coverage of the Walkaway VSP acquisition process and the larger acquisition range.The resolution and signal-to-noise ratio are higher.Walkaway VSP technology has a very good application effect on solving complex structural problems and thin interbed reservoir problems.This paper mainly introduces a VSP constrained sparse spike inversion method based on high-precision VSP data.For the data acquired by the eight-azimuth Walkaway VSP in a work area of Bohai Gulf,a new method of 3D seismic-VSP joint seismic inversion is established.In the application of the actual work area,good inversion results based on Walkaway VSP data were obtained,and a new R24 small layer above the top boundary of the NmRIll oil group was depicted.This result meets the needs of development seismic technology and is used to solve thin interbed reservoirs exploration problems that have very important practical significance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U2039204)the National Key R&D Program of China(Grant No.2018YFC1504203).
文摘Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.