Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here...Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.展开更多
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas(SNG) via...The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas(SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures(600–1200 C). CO methanation reaction was carried out in the temperature range of 300–600 C at different weight hourly space velocities(WHSV = 30000 and 120000 mL·g-1h-1) and pressures(0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 C(Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures(600, 800 and 1000 C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.展开更多
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold sal...Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.展开更多
To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorpor...To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles.The Si@Co±NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell,and there is void space between the core and the shell.When using as anode material for LIBs,Si@Co±NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g^(-1)and a coulombic efficiency of 100.1%at 1000 mA g^(-1)after 3000 cycles,and the capacity loss rate is 0.022%per cycle only.The excellent electrochemical property of Si@Co±NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles,and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell.Also,the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix.This work shows that,through designing a superstructure for the anode materials,we can synergistically reduce the work function and introduce the confinement effect,thus significantly enhancing the anode materials’electrochemical performance in LIBs.展开更多
The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers.To optimize the interfacial charge transfe...The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers.To optimize the interfacial charge transfer of the conventional BiOI/TiO_(2) p-n photocatalyst,we synthesized the BiOI/Bi/TiO_(2) ternary photocatalyst with sandwiched metallic bismuth(Bi~0)by the oxygen-vacancy assisted method.The DFT calculation and structural characterizations confirmed the reaction of the electron-rich oxygen vacancies in the 2D-TiO_(2) nanosheets(TiO_(2)-NS)with the adsorbed BiO~+species.This reaction broke the Bi-O bonds to form Bi^(0) nanoparticles in-situ at the interface but still maintained the p-n heterojunction well.The NO-TPD and XRD analyses for samples correlated the Bi~0 formation with the oxygen vacancy concentrations well.The sandwiched Bi~0 functioned as an electronic transfer mediator like that in the Z-scheme heterostructure.Comparing with 0.20 BiOI/TiO_(2)-NP(NP,Nanoparticles),0.20 BiOI/Bi/TiO_(2)-NS-a(NS,Nanosheet)showed a much improved catalytic performance,i.e.,duplicated apparent quantum yield(AQY)and triplicated reaction rate constant(k).Also,the formation mechanism and the reaction mechanism were investigated in detail.This work provides a new strategy for the improving of the conventional p-n photocatalysts and new insights into the nature of the photocatalysis.展开更多
Photothermal carbon dioxide(CO_(2))methanation has attracted increasing interest in solar fuel synthesis,which employs the advantages of photocatalytic H_(2)O splitting as a hydrogen source and photothermal catalytic ...Photothermal carbon dioxide(CO_(2))methanation has attracted increasing interest in solar fuel synthesis,which employs the advantages of photocatalytic H_(2)O splitting as a hydrogen source and photothermal catalytic CO_(2) reduction.This work prepared three-dimensional(3D)honeycomb N-doped carbon(NC)loaded with core–shell NiO@Ni nanoparticles generated in situ at 500℃(NiO@Ni/NC-500).Under the photothermal catalysis(200℃,1.5 W/cm^(2)),the CH_(4) evolution rate of NiO@Ni/NC-500 reached 5.5 mmol/(g·h),which is much higher than that of the photocatalysis(0.8 mmol/(g·h))and the thermal catalysis(3.7 mmol/(g·h)).It is found that the generated localized surface plasmon resonance enhances the injection of hot electrons from Ni to NiO,while thermal heating accelerates the thermal motion of radicals,thus generating a strong photo-thermal synergistic effect on the reaction.The CO_(2) reduction to CH_(4) follows the*OCH pathway.This work demonstrates the synergistic effect of NiO@Ni and NC can enhance the catalytic performance of photothermal CO_(2) reduction reaction coupled with water splitting reaction.展开更多
Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH_(3)(NH_(3)-SCR).However,challenges such as H_(2)O-or SO_(2)-induced poisoning to these catalysts ...Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH_(3)(NH_(3)-SCR).However,challenges such as H_(2)O-or SO_(2)-induced poisoning to these catalysts still remain.Herein,we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO_(2)catalyst via ball-milling and calcination processes to address these issues.Ce-Ti/MnO_(2)showed better catalytic performance with a higher NO conversion and enhanced H_(2)O-and SO_(2)-resistance at a lowtemperature window(100−150°C)than the MnO_(2),single-atom Ce/MnO_(2),and Ti/MnO_(2)catalysts.The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H_(2)O over the Ce-Ti/MnO_(2)catalyst.The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO_(2)and H_(2)O but enhances their binding to NH_(3).The insight obtained in this work deepens the understanding of catalysis for NH_(3)-SCR.The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO_(2)-based single-atom catalysts.展开更多
Generating different types of defects in heterogeneous catalysts for synergetic promotion of the reactivity and selectivity in catalytic reactions is highly challenging due to the lack of effective theoretical guidanc...Generating different types of defects in heterogeneous catalysts for synergetic promotion of the reactivity and selectivity in catalytic reactions is highly challenging due to the lack of effective theoretical guidance.Herein,we demonstrate a facile strategy to introduce two types of defects into the CuO-ZnO model catalyst,namely oxygen vacancies(OVs)induced by H2 partial reduction and localized amorphous regions(LARs)generated via the ball milling process.Using industrially important Rochow–Müller reaction as a representative,we found OVs predominantly improved the target product selectivity of dimethyldichlorosilane,while LARs significantly increased the conversion of reactant Si.The CuO-ZnO catalyst with optimized OVs and LARs contents achieved the best catalytic property.Theoretical calculation further revealed that LARs promote the generation of the Cu3Si active phase,and OVs impact the electronic structure of the Cu3Si active phase.This work provides a new understanding of the roles of different catalyst defects and a feasible way of engineering the catalyst structure for better catalytic performances.展开更多
A series of copper catalysts with a core-shell or tubular structure containing various contents of Cu, Cu2O, and CuO were prepared via controlled oxidation of Cu nanowires (NWs) and used in the synthesis of dimethyl...A series of copper catalysts with a core-shell or tubular structure containing various contents of Cu, Cu2O, and CuO were prepared via controlled oxidation of Cu nanowires (NWs) and used in the synthesis of dimethyldichlorosilane (M2) via the Rochow reaction. The Cu NWs were prepared from copper (Ⅱ) nitrate using a solution-based reduction method. The samples were characterized by X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. It was found that the morphology and composition of the catalysts could be tailored by varying the oxidation temperature and time. During the gradual oxidation of Cu NWs, the oxidation reaction inflated on the outer surface and gradually developed into the bulk of the NWs, leading to the formation of catalysts with various structures and layered compositions, e.g., Cu NWs with surface Cu2O, ternary Cu-Cu2O-CuO core-shell NWs, binary Cu2O-CuO nanotubes (NTs), and single CuO NTs. Among these catalysts, ternary Cu-Cu2O-CuO core-shell NWs exhibited superior M2 selectivity and Si conversion in the Rochow reaction. The enhanced catalytic performance was mainly attributed to improved mass and heat transfer resulting from the peculiar heterostructure and the synergistic effect among layered components. Our work indicated that the catalytic property of Cu-based nanoparticles can be improved by carefully controlling their structures and compositions.展开更多
Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres w...Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres with highly specific morphology for mixed transition metal oxides on a large scale remains challenging. In this work, uniform rambutan-like heterostructured CeO2~CuO hollow microspheres with numerous copper-ceria interfacial sites and nanorods and nanoparticles as building blocks are prepared via a facile hydrothermal method followed by calcination. Importantly, this approach can be readily scaled up and is applicable to the synthesis of various CuO-based mixed metal oxide complex hollow spheres. The as-prepared CeO2-CuO hollow rambutans exhibit superior performance both as electrode materials for supercapacitors and as Cu-based catalysts for the Rochow reaction, mainly due to the small primary nanoparticle constituents, high surface area, and formation of numerous interior heterostructures.展开更多
In this paper, the application of molecular catalysis for steam reforming of ethanol (SRE) is reviewed. Eight metals (Ni, Co, Cu Pt, Rh, Pd, Ir and Ru) have shown high catalytic activity for SRE. Among them Ni and...In this paper, the application of molecular catalysis for steam reforming of ethanol (SRE) is reviewed. Eight metals (Ni, Co, Cu Pt, Rh, Pd, Ir and Ru) have shown high catalytic activity for SRE. Among them Ni and Rh are very promising because of high d character in the metal bond and low metal-oxygen bonding (vs. metal-carbon). They can effectively promote C-C bond cleavage in the rate-determining process during SRE. However, Rh is weak in water-gas-shift so that CH4 and CO become the main by-products at low reaction temperatures, while Ni catalysts suffer from rapid deactivation due to coking and sintering. Two low-temperature CO-free catalysts have been developed in our lab, namely Rh-Fe/Ca-Al2O3 and carbonyl-derived Rh-Co/CeO2, in which the presence of iron oxide or Co can promote water-gas-shift reaction and significantly improve the SRE performance. On the other hand, adding 3 wt% CaO to Ni/Al2O3 can greatly improve the catalyst stability because the Ca modification not only increases Ni concentration on the Ni/Ca-Al2O3 surface and 3d valence electron density, but also facilitates the water adsorption and coke gasification via water-gas-shift. The availability of abundant surface OH groups helps the formation and conversion of adsorbed formate intermediate. Hence, ethanol reaction on Ca-Al2O3-supported Ni, Pt, Pd and Rh catalysts are found to follow the formate-intermediated pathway, a new reaction pathway alternative to the traditional acetate-interrnediated pathway.展开更多
Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling,undesired disproportio...Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling,undesired disproportionation reactions,and energyintensive purification of products.Herein,we report a heterogeneous 0.5Ruδ+/ZrO_(2) catalyst with partially charged single-atom Ru(0.5 wt.%Ru)supported on commercial ZrO_(2) nanocrystals synthesized by the simple impregnation method followed by H2 reduction.When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane,0.5Ruδ+/ZrO_(2) showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability,even superior to homogeneous catalyst(RuCl3·H2O).Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst.The reaction route over this catalyst is supposed to follow the typical Chalk-Harrod mechanism.This highly efficient and supported singleatom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.展开更多
Mesocrystals, the non-classical crystals with highly ordered nanoparticle superstructures, have shown great potential in many applications because of their newly collective properties. However, there is still a lack o...Mesocrystals, the non-classical crystals with highly ordered nanoparticle superstructures, have shown great potential in many applications because of their newly collective properties. However, there is still a lack of a facile and general synthesis strategy to organize and integrate distinct components into complex mesocrystals, and of reported application for them in industrial catalytic reactions. Herein we report a general bottom-up synthesis of CuO-based trimetallic oxide mesocrystals (denoted as CuO-M1Ox-M2Oy, where M1 and M2 = Zn, In, Fe, Ni, Mn, and Co) using a simple precipitation method followed by a hydrothermal treatment and a topotactic transformation via calcination. When these mesocrystals were used as the catalyst to produce trichlorosilane (TCS) via Si hydrochlorination reaction, they exhibited excellent catalytic performance with much increased Si conversion and TCS selectivity. In particular, the TCS yield was increased 19-fold than that of the catalyst-free process. The latter is the current industrial process. The efficiently catalytic property of these mesocrystals is attributed to the formation of well-defined nanoscale heterointerfaces that can effectively facilitate the charge transfer, and the generation of the compressive and tensile strain on CuO near the interfaces among different metal oxides. The synthetic approach developed here could be applicable to fabricate versatile complicated metal oxide mesocrystals as novel catalysts for various industrial chemical reactions.展开更多
In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane i...In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.展开更多
It is still a big challenge to obtain both highly active and stable Cu-based catalysts for direct synthesis of methyl formate(MF)from syngas.To address the issue,we have designed and synthesized a series of ternary Cu...It is still a big challenge to obtain both highly active and stable Cu-based catalysts for direct synthesis of methyl formate(MF)from syngas.To address the issue,we have designed and synthesized a series of ternary Cu-Ca-Zr catalysts,namely,the ordered mesoporous Cu-Ca-Zr catalyst prepared by one-pot evaporation-induced self-assembly(EISA)method,and the supported CuO/CaO-ZrO_(2)catalysts by impregnating with copper precursor or by immobilizing copper nanoparticles.In the latter two catalysts,the ordered mesoporous CaO-ZrO_(2)support was also prepared by the EISA method.The catalysts were characterized by techniques such as ICP,XRD,TEM,N2 isotherm adsorption-desorption,XPS and H2-TPR,and used for direct synthesis of MF.The results indicated that the catalyst prepared by onepot EISA method,in which the CuO species are highly dispersed in frame of CaO-ZrO_(2),exhibits much better activity and stability as compared with the other two catalysts with most of CuO located on the outer surface of the CaO-ZrO_(2)support,because the former has a higher specific surface area,enhanced synergistic effect and stronger interaction between the CaO-ZrO_(2)support and CuO active constituent.展开更多
Generating heterophase structures in nanomaterials,e.g.,heterophase metal nanocrystals,is an effective way to tune their physicochemical properties because of their high-energy nature and unique electronic environment...Generating heterophase structures in nanomaterials,e.g.,heterophase metal nanocrystals,is an effective way to tune their physicochemical properties because of their high-energy nature and unique electronic environment of the generated interfaces.However,the direct synthesis of heterophase metal nanocrystals remains a great challenge due to their unstable nature.Herein,we report the in situar direct synthesis of heterophase Ni nanocrystals on graphene.The heterostructure of face-centered cubic(fee)and hexagonal close-packed(hep)phase was generated via the epitaxial growth of hep Ni and the partial transformation of fee Ni and stabilized by the anchoring effect of graphene toward fee Ni nanocrystal and the preferential adsorption of surfactant polyethylenimine(PEI)toward epitaxial hep Ni.Comparing with the fee Ni nanocrystals grown on graphene,the heterophase(fcc/hcp)Ni nanocrystals in situ grown on graphene showed a greatly improved catalytic activity and reusability in 4-nitrophenol(4-NP)reduction to 4-aminophenol(4-AP).The measured apparent rate constant and the activity parameter were 2.958 min^(-1) and 102 min^(-1)·mg^(-1),respectively,higher than that of the best reported non-noble metal catalysts and most noble metal catalysts.The control experiments and density functional theory calculations reveal that the interface of the fee and hep phases enhances the adsorption of substrate 4-NP and thus facilitates the reaction kinetics.This work proves the novel idea for the rational design of heterophase metal nanocrystals by employing the synergistic effect of surfactant and support,and also the potential of creating the heterostructure for enhancing their catalytic reactivity.展开更多
基金financially supported by the Natural Science Foundation of Guangdong Province (2022A1515012359)the National Natural Science Foundation of China (21902121)+1 种基金the STU Scientific Research Foundation for Talents (NTF21020)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG09A)。
文摘Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.
基金supported by the Hundred Talents Program of the Chinese Academy of Sciences (CAS),State Key Laboratory of Multiphase Complex Systems of China (No.MPCS-2009-C-01)the National Key Technology R&D Program of China (No.2010BAC66B01)the Knowledge Innovation Program of the CAS (No.KGCX2-YW-396)
文摘The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas(SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures(600–1200 C). CO methanation reaction was carried out in the temperature range of 300–600 C at different weight hourly space velocities(WHSV = 30000 and 120000 mL·g-1h-1) and pressures(0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 C(Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures(600, 800 and 1000 C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.
基金supported by the Project from Institute of Chemical and Engineering Sciences (ICES), Singapore (ICES/15-1G4B01)~~
文摘Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.
基金financial supports by the National Natural Science Foundation of China(No.51772295)support of GTIIT for the collaboration,and the start-up fund provided by GTIIT
文摘To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles.The Si@Co±NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell,and there is void space between the core and the shell.When using as anode material for LIBs,Si@Co±NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g^(-1)and a coulombic efficiency of 100.1%at 1000 mA g^(-1)after 3000 cycles,and the capacity loss rate is 0.022%per cycle only.The excellent electrochemical property of Si@Co±NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles,and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell.Also,the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix.This work shows that,through designing a superstructure for the anode materials,we can synergistically reduce the work function and introduce the confinement effect,thus significantly enhancing the anode materials’electrochemical performance in LIBs.
基金financially supported by the National Natural Science Foundation of China(No.21043006 and 51702205)the Education Department of Guangdong Province(No.2018KTSCX063 and 2013KJCX0081)+2 种基金the Science and Technology Planning Project of Guangdong Province(No.2014A020216045)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG09A)the Guangdong Key Discipline Fund at GTIIT。
文摘The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers.To optimize the interfacial charge transfer of the conventional BiOI/TiO_(2) p-n photocatalyst,we synthesized the BiOI/Bi/TiO_(2) ternary photocatalyst with sandwiched metallic bismuth(Bi~0)by the oxygen-vacancy assisted method.The DFT calculation and structural characterizations confirmed the reaction of the electron-rich oxygen vacancies in the 2D-TiO_(2) nanosheets(TiO_(2)-NS)with the adsorbed BiO~+species.This reaction broke the Bi-O bonds to form Bi^(0) nanoparticles in-situ at the interface but still maintained the p-n heterojunction well.The NO-TPD and XRD analyses for samples correlated the Bi~0 formation with the oxygen vacancy concentrations well.The sandwiched Bi~0 functioned as an electronic transfer mediator like that in the Z-scheme heterostructure.Comparing with 0.20 BiOI/TiO_(2)-NP(NP,Nanoparticles),0.20 BiOI/Bi/TiO_(2)-NS-a(NS,Nanosheet)showed a much improved catalytic performance,i.e.,duplicated apparent quantum yield(AQY)and triplicated reaction rate constant(k).Also,the formation mechanism and the reaction mechanism were investigated in detail.This work provides a new strategy for the improving of the conventional p-n photocatalysts and new insights into the nature of the photocatalysis.
基金funded by the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(Nos.22278405,52222005,and 22278006).
文摘Photothermal carbon dioxide(CO_(2))methanation has attracted increasing interest in solar fuel synthesis,which employs the advantages of photocatalytic H_(2)O splitting as a hydrogen source and photothermal catalytic CO_(2) reduction.This work prepared three-dimensional(3D)honeycomb N-doped carbon(NC)loaded with core–shell NiO@Ni nanoparticles generated in situ at 500℃(NiO@Ni/NC-500).Under the photothermal catalysis(200℃,1.5 W/cm^(2)),the CH_(4) evolution rate of NiO@Ni/NC-500 reached 5.5 mmol/(g·h),which is much higher than that of the photocatalysis(0.8 mmol/(g·h))and the thermal catalysis(3.7 mmol/(g·h)).It is found that the generated localized surface plasmon resonance enhances the injection of hot electrons from Ni to NiO,while thermal heating accelerates the thermal motion of radicals,thus generating a strong photo-thermal synergistic effect on the reaction.The CO_(2) reduction to CH_(4) follows the*OCH pathway.This work demonstrates the synergistic effect of NiO@Ni and NC can enhance the catalytic performance of photothermal CO_(2) reduction reaction coupled with water splitting reaction.
基金We gratefully acknowledge the financial supports from the National Natural Science Foundation of China(Nos.52070180,51938014,and 21802054)the Science Research Project of the Ministry of Education of the Heilongjiang Province of China(No.145109102)+2 种基金the Beijing Chenxi Environmental Engineering Co.,Ltd.Z.Z.thanks the financial support of Guangdong Key discipline fund for this collaborationY.J.thanks the financial supports from the Outstanding Youth cultivation program of Beijing Technology and Business University(No.19008021144)Research Foundation for Advanced Talents of Beijing Technology and Business University(No.19008020159).
文摘Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH_(3)(NH_(3)-SCR).However,challenges such as H_(2)O-or SO_(2)-induced poisoning to these catalysts still remain.Herein,we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO_(2)catalyst via ball-milling and calcination processes to address these issues.Ce-Ti/MnO_(2)showed better catalytic performance with a higher NO conversion and enhanced H_(2)O-and SO_(2)-resistance at a lowtemperature window(100−150°C)than the MnO_(2),single-atom Ce/MnO_(2),and Ti/MnO_(2)catalysts.The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H_(2)O over the Ce-Ti/MnO_(2)catalyst.The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO_(2)and H_(2)O but enhances their binding to NH_(3).The insight obtained in this work deepens the understanding of catalysis for NH_(3)-SCR.The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO_(2)-based single-atom catalysts.
基金support from the National Natural Science Foundation of China(Nos.21878301 and 21978299)the Open Research Fund of State Key Laboratory of Multiphase Complex Systems(No.MPCS-2021-D-08)+4 种基金GRINM Group.Y.J.J.thanks the financial support from the Research Foundation for Advanced Talents of Beijing Technology and Business University(No.19008020159)X.L.C.thanks the financial support from the project for improving the research ability of postgraduate from Beijing Technology and Business University(No.19008022056)L.W.X.thanks the financial support from the Research Foundation for Youth Scholars of Beijing Technology and Business University(No.QNJJ2022-22)Z.Y.Z.thanks the financial support of Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC)Guangdong Technion-Israel Institute of Technology and Guangdong Key Discipline Fund(2022)for this collaboration。
文摘Generating different types of defects in heterogeneous catalysts for synergetic promotion of the reactivity and selectivity in catalytic reactions is highly challenging due to the lack of effective theoretical guidance.Herein,we demonstrate a facile strategy to introduce two types of defects into the CuO-ZnO model catalyst,namely oxygen vacancies(OVs)induced by H2 partial reduction and localized amorphous regions(LARs)generated via the ball milling process.Using industrially important Rochow–Müller reaction as a representative,we found OVs predominantly improved the target product selectivity of dimethyldichlorosilane,while LARs significantly increased the conversion of reactant Si.The CuO-ZnO catalyst with optimized OVs and LARs contents achieved the best catalytic property.Theoretical calculation further revealed that LARs promote the generation of the Cu3Si active phase,and OVs impact the electronic structure of the Cu3Si active phase.This work provides a new understanding of the roles of different catalyst defects and a feasible way of engineering the catalyst structure for better catalytic performances.
基金Acknowledgements The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21506224 and 51272252). Z. Y. Zhong thanks Institute of Chemical and Engineering Sciences (ICES) for the kind support of the collaboration.
文摘A series of copper catalysts with a core-shell or tubular structure containing various contents of Cu, Cu2O, and CuO were prepared via controlled oxidation of Cu nanowires (NWs) and used in the synthesis of dimethyldichlorosilane (M2) via the Rochow reaction. The Cu NWs were prepared from copper (Ⅱ) nitrate using a solution-based reduction method. The samples were characterized by X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. It was found that the morphology and composition of the catalysts could be tailored by varying the oxidation temperature and time. During the gradual oxidation of Cu NWs, the oxidation reaction inflated on the outer surface and gradually developed into the bulk of the NWs, leading to the formation of catalysts with various structures and layered compositions, e.g., Cu NWs with surface Cu2O, ternary Cu-Cu2O-CuO core-shell NWs, binary Cu2O-CuO nanotubes (NTs), and single CuO NTs. Among these catalysts, ternary Cu-Cu2O-CuO core-shell NWs exhibited superior M2 selectivity and Si conversion in the Rochow reaction. The enhanced catalytic performance was mainly attributed to improved mass and heat transfer resulting from the peculiar heterostructure and the synergistic effect among layered components. Our work indicated that the catalytic property of Cu-based nanoparticles can be improved by carefully controlling their structures and compositions.
文摘Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres with highly specific morphology for mixed transition metal oxides on a large scale remains challenging. In this work, uniform rambutan-like heterostructured CeO2~CuO hollow microspheres with numerous copper-ceria interfacial sites and nanorods and nanoparticles as building blocks are prepared via a facile hydrothermal method followed by calcination. Importantly, this approach can be readily scaled up and is applicable to the synthesis of various CuO-based mixed metal oxide complex hollow spheres. The as-prepared CeO2-CuO hollow rambutans exhibit superior performance both as electrode materials for supercapacitors and as Cu-based catalysts for the Rochow reaction, mainly due to the small primary nanoparticle constituents, high surface area, and formation of numerous interior heterostructures.
基金The funding from the Institute of Chemical and Engineering Sciences,Singapore,to support the project"Alcohol Reforming for Hydrogen Generation"
文摘In this paper, the application of molecular catalysis for steam reforming of ethanol (SRE) is reviewed. Eight metals (Ni, Co, Cu Pt, Rh, Pd, Ir and Ru) have shown high catalytic activity for SRE. Among them Ni and Rh are very promising because of high d character in the metal bond and low metal-oxygen bonding (vs. metal-carbon). They can effectively promote C-C bond cleavage in the rate-determining process during SRE. However, Rh is weak in water-gas-shift so that CH4 and CO become the main by-products at low reaction temperatures, while Ni catalysts suffer from rapid deactivation due to coking and sintering. Two low-temperature CO-free catalysts have been developed in our lab, namely Rh-Fe/Ca-Al2O3 and carbonyl-derived Rh-Co/CeO2, in which the presence of iron oxide or Co can promote water-gas-shift reaction and significantly improve the SRE performance. On the other hand, adding 3 wt% CaO to Ni/Al2O3 can greatly improve the catalyst stability because the Ca modification not only increases Ni concentration on the Ni/Ca-Al2O3 surface and 3d valence electron density, but also facilitates the water adsorption and coke gasification via water-gas-shift. The availability of abundant surface OH groups helps the formation and conversion of adsorbed formate intermediate. Hence, ethanol reaction on Ca-Al2O3-supported Ni, Pt, Pd and Rh catalysts are found to follow the formate-intermediated pathway, a new reaction pathway alternative to the traditional acetate-interrnediated pathway.
基金the National Natural Science Foundation of China(No.22002004)Y.J.J.thanks the financial supports from the Outstanding Youth Cultivation Program of Beijing Technology and Business University(No.19008021144)+1 种基金Research Foundation for Advanced Talents of Beijing Technology and Business University(No.19008020159)Z.Y.Z.thanks the financial support of Guangdong Key discipline fund for this collaboration.
文摘Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling,undesired disproportionation reactions,and energyintensive purification of products.Herein,we report a heterogeneous 0.5Ruδ+/ZrO_(2) catalyst with partially charged single-atom Ru(0.5 wt.%Ru)supported on commercial ZrO_(2) nanocrystals synthesized by the simple impregnation method followed by H2 reduction.When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane,0.5Ruδ+/ZrO_(2) showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability,even superior to homogeneous catalyst(RuCl3·H2O).Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst.The reaction route over this catalyst is supposed to follow the typical Chalk-Harrod mechanism.This highly efficient and supported singleatom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.
基金the National Natural Science Foundation of China(Nos.21878301,21978299,and 21908224)Z.Z.thanks the kind support of Guangdong Technion Israel Institute of Technology(GTTIT)for the collaboration.
文摘Mesocrystals, the non-classical crystals with highly ordered nanoparticle superstructures, have shown great potential in many applications because of their newly collective properties. However, there is still a lack of a facile and general synthesis strategy to organize and integrate distinct components into complex mesocrystals, and of reported application for them in industrial catalytic reactions. Herein we report a general bottom-up synthesis of CuO-based trimetallic oxide mesocrystals (denoted as CuO-M1Ox-M2Oy, where M1 and M2 = Zn, In, Fe, Ni, Mn, and Co) using a simple precipitation method followed by a hydrothermal treatment and a topotactic transformation via calcination. When these mesocrystals were used as the catalyst to produce trichlorosilane (TCS) via Si hydrochlorination reaction, they exhibited excellent catalytic performance with much increased Si conversion and TCS selectivity. In particular, the TCS yield was increased 19-fold than that of the catalyst-free process. The latter is the current industrial process. The efficiently catalytic property of these mesocrystals is attributed to the formation of well-defined nanoscale heterointerfaces that can effectively facilitate the charge transfer, and the generation of the compressive and tensile strain on CuO near the interfaces among different metal oxides. The synthetic approach developed here could be applicable to fabricate versatile complicated metal oxide mesocrystals as novel catalysts for various industrial chemical reactions.
基金The work was supported by the National Natural Science Foundation of China (grant number 21506224). Z.Z. is grateful for support from the Institute of Chemical and Engineering Sciences.
文摘In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.
基金The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China(21776286)the National Basic Research Program of China(2014CB744306)the Fund of State Key Laboratory of Multiphase complex systems(MPCS–2015–A–06).
文摘It is still a big challenge to obtain both highly active and stable Cu-based catalysts for direct synthesis of methyl formate(MF)from syngas.To address the issue,we have designed and synthesized a series of ternary Cu-Ca-Zr catalysts,namely,the ordered mesoporous Cu-Ca-Zr catalyst prepared by one-pot evaporation-induced self-assembly(EISA)method,and the supported CuO/CaO-ZrO_(2)catalysts by impregnating with copper precursor or by immobilizing copper nanoparticles.In the latter two catalysts,the ordered mesoporous CaO-ZrO_(2)support was also prepared by the EISA method.The catalysts were characterized by techniques such as ICP,XRD,TEM,N2 isotherm adsorption-desorption,XPS and H2-TPR,and used for direct synthesis of MF.The results indicated that the catalyst prepared by onepot EISA method,in which the CuO species are highly dispersed in frame of CaO-ZrO_(2),exhibits much better activity and stability as compared with the other two catalysts with most of CuO located on the outer surface of the CaO-ZrO_(2)support,because the former has a higher specific surface area,enhanced synergistic effect and stronger interaction between the CaO-ZrO_(2)support and CuO active constituent.
基金funded by the National Natural Science Foundation of China(No.21776286).
文摘Generating heterophase structures in nanomaterials,e.g.,heterophase metal nanocrystals,is an effective way to tune their physicochemical properties because of their high-energy nature and unique electronic environment of the generated interfaces.However,the direct synthesis of heterophase metal nanocrystals remains a great challenge due to their unstable nature.Herein,we report the in situar direct synthesis of heterophase Ni nanocrystals on graphene.The heterostructure of face-centered cubic(fee)and hexagonal close-packed(hep)phase was generated via the epitaxial growth of hep Ni and the partial transformation of fee Ni and stabilized by the anchoring effect of graphene toward fee Ni nanocrystal and the preferential adsorption of surfactant polyethylenimine(PEI)toward epitaxial hep Ni.Comparing with the fee Ni nanocrystals grown on graphene,the heterophase(fcc/hcp)Ni nanocrystals in situ grown on graphene showed a greatly improved catalytic activity and reusability in 4-nitrophenol(4-NP)reduction to 4-aminophenol(4-AP).The measured apparent rate constant and the activity parameter were 2.958 min^(-1) and 102 min^(-1)·mg^(-1),respectively,higher than that of the best reported non-noble metal catalysts and most noble metal catalysts.The control experiments and density functional theory calculations reveal that the interface of the fee and hep phases enhances the adsorption of substrate 4-NP and thus facilitates the reaction kinetics.This work proves the novel idea for the rational design of heterophase metal nanocrystals by employing the synergistic effect of surfactant and support,and also the potential of creating the heterostructure for enhancing their catalytic reactivity.