Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with ...Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.展开更多
Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dus...Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dust storms is poorly known.In this study,we describe the association between heatwaves and dust events and propose a mechanism for such compound events in the TD.The results show that,from 1993 to 2022,the frequency and intensity of heatwaves in the TD have increased at a rate of 0.21 days year^(-1)and 0.02℃ year^(-1),respectively.More than 40% of heatwaves existed with dust events,which significantly lagged behind heatwaves.Mechanically,the higher the air temperature,the hotter and drier the soil,leading to more dust emissions in the TD.In high-occurrence heatwave years,a large-scale wave train of“cyclone-anticyclone-cyclone”in the northwest-southeast direction was found,with the anticyclone of which hovered over the TD region.The anomalous anticyclones favored the formation and maintenance of heatwaves,and subsequent anomalous cyclones in the wave train triggered strong dust events followed by heatwaves.With climate warming,the compound events of heatwave and dust storm are becoming bigger hazards threatening the socioeconomic and ecological security in the TD,the profound study of which is critical to understanding regional extreme responses.展开更多
Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more a...Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.展开更多
基金supported by the National Natural Science Foundation of China the National Natural Science Foundation of China(Grant No.41991231)the Fundamental Research Funds for the Central Universities(lzujbky-2022-kb11).
文摘Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41991231 and 91937302)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb11)。
文摘Taklamakan Desert(TD)has been characterized by numerous heatwaves and dust storms,leading to negative effects on societies and ecosystems at regional and global scales.However,the association between heatwaves and dust storms is poorly known.In this study,we describe the association between heatwaves and dust events and propose a mechanism for such compound events in the TD.The results show that,from 1993 to 2022,the frequency and intensity of heatwaves in the TD have increased at a rate of 0.21 days year^(-1)and 0.02℃ year^(-1),respectively.More than 40% of heatwaves existed with dust events,which significantly lagged behind heatwaves.Mechanically,the higher the air temperature,the hotter and drier the soil,leading to more dust emissions in the TD.In high-occurrence heatwave years,a large-scale wave train of“cyclone-anticyclone-cyclone”in the northwest-southeast direction was found,with the anticyclone of which hovered over the TD region.The anomalous anticyclones favored the formation and maintenance of heatwaves,and subsequent anomalous cyclones in the wave train triggered strong dust events followed by heatwaves.With climate warming,the compound events of heatwave and dust storm are becoming bigger hazards threatening the socioeconomic and ecological security in the TD,the profound study of which is critical to understanding regional extreme responses.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012297)the Shenzhen Science and Technology Innovation Commission(R2020A045)the Open Project of Guangdong Provincial Key Laboratory of High-Performance Computing(2021).
文摘Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.