期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ecological adaptati ons in fl ue nee the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp. 被引量:2
1
作者 Yelena Guttman Janak Raj Joshi +6 位作者 Nofar Chriker Nirmal Khadka Maya Kleiman Noam Reznik Zunzheng Wei zohar kerem Iris Yedidia 《Horticulture Research》 SCIE 2021年第1期124-135,共12页
Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that... Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments. 展开更多
关键词 spp. adapted SUSCEPTIBILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部