Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that...Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.展开更多
基金the Chief Scientist of the Israeli Ministry of Agriculture(Grant No.20-01-0193).
文摘Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.