Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solut...Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.展开更多
基金supported by NSFC(Grant Nos.11171092 and 11571093)supported by NSFC(Grant No.11371117)
文摘Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.