We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophy...We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophysical Data, ACAD). This contains 27 553 records and is used for the purpose of analyzing stellar kinematics in the solar neighborhood. Using the Lindblad-Oort model and compiled ACAD, we calculated the solar motion and Oort constants in different age-metallicity bins. The evolution of kinematical parameters with stellar age and metallicity was investigated directly. The results show that the component of the solar motion in the direction of Galactic rotation (denoted S_2) linearly increases with age, which may be a conse- quence of the scattering processes, and its value for a dynamical cold disk was found to be 8.0 ± 1.2 km s^-1. S_2 also linearly increases with metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophysical Data, ACAD). This contains 27 553 records and is used for the purpose of analyzing stellar kinematics in the solar neighborhood. Using the Lindblad-Oort model and compiled ACAD, we calculated the solar motion and Oort constants in different age-metallicity bins. The evolution of kinematical parameters with stellar age and metallicity was investigated directly. The results show that the component of the solar motion in the direction of Galactic rotation (denoted S_2) linearly increases with age, which may be a conse- quence of the scattering processes, and its value for a dynamical cold disk was found to be 8.0 ± 1.2 km s^-1. S_2 also linearly increases with metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.