We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to...We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.展开更多
The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation.In this study, three Fe...The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation.In this study, three Fe film samples with thicknesses of 50 monolayers(ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used.The magnetic anisotropy constant obtained from ferromagnetic resonance(FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy(MCA) at the normal deposition angle with larger Fe thickness.However, the in-plane uniaxial magnetic anisotropy(UMA) is induced by a higher oblique deposition angle and a smaller thickness.Its hard axis lies between the [100] and [010] directions.The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA.Due to MCA, when the magnetic field is weaker than the saturated field,the magnetization direction does not always align with the external field.The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07.Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect(MOKE) and anisotropic magnetoresistance(AMR) systems.Thus, a vector network analyzer ferromagnetic resonance(VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.展开更多
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFF01010303,2017YFB0702702,and 2016YFA0300701)the National Natural Sciences Foundation of China(Grant Nos.52031015,1187411,51427801,and 51871235)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant Nos.QYZDJ-SSW-JSC023,KJZD-SW-M01,and ZDYZ2012-2).
文摘We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO_(3) via an all-optical method.After laser irradiation,the terahertz spin precession is hard to be excited in a bare GdFeO_(3) without spin reorientation phase but efficiently in Fe/GdFeO_(3).Both quasi-ferromagnetic and impurity modes,as well as a phonon mode,are observed.We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3.Moreover,the excitation efficiency of dynamics can be modified significantly via the pump laser influence.Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets.It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921403 and 2016YFA0300701)the National Natural Science Foundation of China(Grant Nos.51427801,11374350,and 51671212)the Chinese Government Scholarship(Grant No.2015GXYG37)
文摘The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation.In this study, three Fe film samples with thicknesses of 50 monolayers(ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used.The magnetic anisotropy constant obtained from ferromagnetic resonance(FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy(MCA) at the normal deposition angle with larger Fe thickness.However, the in-plane uniaxial magnetic anisotropy(UMA) is induced by a higher oblique deposition angle and a smaller thickness.Its hard axis lies between the [100] and [010] directions.The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA.Due to MCA, when the magnetic field is weaker than the saturated field,the magnetization direction does not always align with the external field.The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07.Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect(MOKE) and anisotropic magnetoresistance(AMR) systems.Thus, a vector network analyzer ferromagnetic resonance(VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.