Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for c...Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.展开更多
Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors ...Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.展开更多
Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a die...Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.展开更多
基金partially supported by the Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12175212,and 12120101005)the Key Laboratory Foundation of the Science and Technology on Plasma Physics Laboratory(Nos.6142A04200103 and 6142A0421010).
文摘Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.
基金supported by the Tsinghua University Initiative Scientific Research Program,the National Natural Science Foundation of China(Nos.11633003,12025301,and 11821303)the National Key R&D Program of China(Nos.2018YFA0404502 and 2016YFA040080X).
文摘Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.
基金the National Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12174350)Key Laboratory Foundation of The Sciences and Technology on Plasma Physics Laboratory(No.6142A04200103)Independent scientific research(No.JCKYS2021212011).
文摘Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.