期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
BS_(0.5)BNT-based relaxor ferroelectric ceramic/glass-ceramic composites for energy storage 被引量:1
1
作者 Xuhai Shi Kai Li +8 位作者 zong-yang shen Junqi Liu Chaoqun Chen Xiaojun Zeng Bo Zhang Fusheng Song Wenqin Luo Zhumei Wang Yueming Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第4期695-710,共16页
Relaxor ferroelectric ceramics have very high dielectric constant(e)but relatively low electrical breakdown strength(Eb),while glass-ceramics exhibit higher E,due to the more uniformly dispersed amorphous phases and s... Relaxor ferroelectric ceramics have very high dielectric constant(e)but relatively low electrical breakdown strength(Eb),while glass-ceramics exhibit higher E,due to the more uniformly dispersed amorphous phases and submicrocrystals/nanocrystals inside.How to effectively combine the advantages of both relaxor ferroelectric ceramics and glass-ceramics is of great significance for the development of new dielectric materials with high energy storage performance.In this work,we firstly prepared BaO-SrO-Bi_(2)O_(3)-Na_(2)0-TiO_(2)-Al_(2)O_(3)-SiO_(2)(abbreviated as GS)glass powders,and then fabricated(Ba_(0.3)Sr_(0.7))_(0.5)(Bi_(0.5)Na_(0.5))_(0.5)TiO_(3)+x wt%GS ceramic composites(abbreviated as BSo.sBNT-xGS,x=0,2,6,10,14,16,and 18).Submicrocrystals/nanocrystals with a similar composition to BSo.sBNT were crystalized from the glass,ensuring the formation of uniform core-shell structure in BSo.sBNT-xGS relaxor ferroelectric ceramic/glass-ceramic composites.When the addition amount of GS was 14 wt%,the composite possessed both high&r(>3200 at 1 kHz)and high E,(~170 kV/cm)at room temperature,and their recoverable energy storage density and efficiency were Wrec=2.1 J/cm’and n=65.2%,respectively.The BSo.sBNT-14GS composite also had several attractive properties such as good temperature,frequency,cycle stability,and fast charge-discharge speed.This work provides insights into the relaxor ceramic/glass-ceramic composites for pulsed power capacitors and sheds light on the utilization of the hybrid systems. 展开更多
关键词 relaxor ferroelectrics energy storage ceramics GLASS-CERAMICS Bi_(0.5)Na_(0.5)TiO_(3)(BNT) Ba_(0.3)Sr_(0.7)TiO_(3)(BST)
原文传递
Progress and perspectives in dielectric energy storage ceramics 被引量:27
2
作者 Dongxu LI Xiaojun ZENG +7 位作者 Zhipeng LI zong-yang shen Hua HAO Wenqin LUO Xingcai WANG Fusheng SONG Zhumei WANG Yueming LI 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第4期675-703,共29页
Dielectric ceramic capacitors,with the advantages of high power density,fast chargedischarge capability,excellent fatigue endurance,and good high temperature stability,have been acknowledged to be promising candidates... Dielectric ceramic capacitors,with the advantages of high power density,fast chargedischarge capability,excellent fatigue endurance,and good high temperature stability,have been acknowledged to be promising candidates for solid-state pulse power systems.This review investigates the energy storage performances of linear dielectric,relaxor ferroelectric,and antiferroelectric from the viewpoint of chemical modification,macro/microstructural design,and electrical property optimization.Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized.Finally,we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future. 展开更多
关键词 energy storage ceramics DIELECTRIC relaxor ferroelectric ANTIFERROELECTRIC pulse power capacitor
原文传递
P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications 被引量:11
3
作者 Dongxu LI zong-yang shen +5 位作者 Zhipeng LI Wenqin LUO Xingcai WANG Zhumei WANG Fusheng SONG Yueming LI 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第2期183-192,共10页
(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a te... (Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a tetragonal symmetry to pseudo-cubic one with the increase of x value,being confirmed by X-ray diffraction(XRD)and Raman results.The Tm corresponding to a temperature in the vicinity of maximum dielectric constant gradually decreases from 110℃(x=0.3)to-45℃(x=0.8),across Tm=36℃(x=0.5)with a maximum dielectric constant(ɛr=5920@1 kHz)around room temperature.The saturated polarization Ps gradually while the remnant polarization Pr sharply decreases with the increase of x value,making the P-E hysteresis loop of BSxBNT ceramics goes slim.A maximum difference between Ps and Pr(Ps-Pr)is obtained for BSxBNT ceramics with x=0.5,at which a high recoverable energy density(Wrec=1.04 J/cm3)is achieved under an applied electric field of 100 kV/cm with an efficiency ofη=77%.Meanwhile,the varied temperature P-E loops,fatigue measurements,and electric breakdown characteristics for the sample with x=0.5 indicate that it is promising for pulsed power energy storage capacitor candidate materials. 展开更多
关键词 energy storage ceramics Ba0.3Sr0.7TiO3(BST) Bi0.5Na0.5TiO3(BNT) relaxor ferroelectrics pulsed power capacitor
原文传递
Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures 被引量:10
4
作者 zong-yang shen Yu Wang +6 位作者 Yanxue Tang Yuanying Yu Wen-Qin Luo Xingcai Wang Yueming Li Zhumei Wang Fusheng Song 《Journal of Materiomics》 SCIE EI 2019年第4期641-648,共8页
A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided ... A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided by a formula of BST+y%BBSZ(y=0,2,4,7,and 10,in mass).The effect of BBSZ glass content on the structure,dielectric properties and energy storage characteristics of the ceramics was investigated.The dielectric constant reduced but the endurable electrical strength enhanced due to the BBSZ glass addition in BST ceramics.In particular,the dielectric loss of the ceramics at elevated temperature(e.g.200℃)can be strongly suppressed from tanδ>20%to tanδ<3% after BBSZ glass modification.For Ba_(0.3)Sr_(0.7)TiO_(3)+2%BBSZ ceramics,an optimized energy storage density(γ=0.63 J/cm^(3))and efficiency(η=91.6%)under an applied electric field of 160 kV/cm was obtained at room temperature.Meanwhile,the temperature dependent polarization-electric field(P-E)hysteresis loops were measured to evaluate the energy storage characteristics of the ceramics potential for high voltage capacitor application at elevated temperatures. 展开更多
关键词 Barium strontium titanate Glass modification Energy storage Ceramic capacitor
原文传递
Ce and W co-doped CaBi_(2)Nb_(2)O_(9) with enhanced piezoelectric constant and electrical resistivity at high temperature 被引量:7
5
作者 zong-yang shen Chen Qin +4 位作者 Wen-Qin Luo Fusheng Song Zhumei Wang Yueming Li Shujun Zhang 《Journal of Materiomics》 SCIE EI 2020年第3期459-466,共8页
Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect... Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect of W addition on the structure,electrical resistivity,dielectric and piezoelectric properties.A piezoelectric constant d33 of 13.4 pC/N is obtained in CCBN-W2 ceramics,>100% higher than that of pure CaBi_(2)Nb_(2)O_(9)(d_(33)=5.8e6.4 pC/N).Of particular significance is that the electrical resistivity of CCBN-W2 ceramics(r=3.7×109 U cm at 500℃)is three orders of magnitude higher than pure CaBi_(2)Nb_(2)O_(9)(r=2.9×10^(6) U cm at same temperature).All these properties,together with its low dielectric loss(tandδ0.13%)and excellent d33 thermal stability up to 800℃,merit the CCBN-W2 ceramics for high temperature piezoelectric sensing applications. 展开更多
关键词 Ultra-high temperature ceramics Piezoelectric properties Aurivillius phase Bismuth layered structure CaBi_(2)Nb_(2)O_(9)
原文传递
Remarkably enhanced dielectric stability and energy storage properties in BNT–BST relaxor ceramics by A-site defect engineering for pulsed power applications 被引量:4
6
作者 Zhipeng LI Dong-Xu LI +6 位作者 zong-yang shen Xiaojun ZENG Fusheng SONG Wenqin LUO Xingcai WANG Zhumei WANG Yueming LI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期283-294,共12页
Lead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density(Wrec)especially at low electric field condition.To address this challenge,we propose an A-site defect... Lead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density(Wrec)especially at low electric field condition.To address this challenge,we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions,in which Ba_(0.105)Na_(0.325)Sr_(0.245−1.5x)□_(0.5x)Bi_(0.325)+xTiO_(3)(BNS_(0.245−1.5x)□_(0.5x)B_(0.325+x)T,x=0,0.02,0.04,0.06,and 0.08)lead-free ceramics are selected as the representative.The BNS_(0.245−1.5x)□_(0.5x)B_(0.325+x)T ceramics are prepared by using pressureless solid-state sintering and achieve large W_(rec)(1.8 J/cm^(3))at a low electric field(@110 kV/cm)when x=0.06.The value of 1.8 J/cm3 is super high as compared to all other W_(rec) in lead-free bulk ceramics under a relatively low electric field(<160 kV/cm).Furthermore,a high dielectric constant of 2930 within 15%fluctuation in a wide temperature range of 40–350℃is also obtained in BNS_(0.245−1.5x)□_(0.5x)B_(0.325+x)T(x=0.06)ceramics.The excellent performances can be attributed to the A-site defect engineering,which can reduce remnant polarization(P_(r))and improve the thermal evolution of polar nanoregions(PNRs).This work confirms that the BNS_(0.245−1.5x)□_(0.5x)B_(0.325+x)T(x=0.06)ceramics are desirable for advanced pulsed power capacitors,and will push the development of a series of Bi0.5Na0.5TiO3(BNT)-based ceramics with high W_(rec) and high-temperature stability. 展开更多
关键词 relaxor ferroelectrics energy storage ceramics ceramic capacitor Bi_(0.5)Na_(0.5)TiO_(3)(BNT) defect engine
原文传递
Progress and challenges of ceramics for supercapacitors 被引量:3
7
作者 Xiaojun Zeng Hanbin Song +1 位作者 zong-yang shen Martin Moskovits 《Journal of Materiomics》 SCIE EI 2021年第6期1198-1224,共27页
Supercapacitors(SCs)are one of the most promising electrical energy storage technologies systems due to their fast storage capability,long cycle stability,high power density,and environmental friendliness.Enormous res... Supercapacitors(SCs)are one of the most promising electrical energy storage technologies systems due to their fast storage capability,long cycle stability,high power density,and environmental friendliness.Enormous research has focused on the design of nanomaterials to achieve low cost,highly efficient,and stable electrodes.Ceramic materials provide promising candidates for SCs electrodes.However,the low specific surface area and relatively low surface activity severely hinder the SCs performance of ceramic materials.Therefore,the basic understanding of ceramic materials,the optimization strategy,and the research progress of ceramic electrodes are the key steps to enable good electrical conductivity and excellent electron transport capabilities,and realize economically feasible ceramic electrodes in industry.Herein,we review recent achievements in manufacturing the ceramic electrodes for SCs,including metal oxide ceramics,multi-elemental oxide ceramics,metal hydroxide ceramics,metal sulfide ceramics,carbon-based ceramics,carbide and nitride ceramics,and other special ceramics(MXene).We focus on the unique and key factors in the component and structural design of ceramic electrodes,which correlate them with SCs performance.In addition,the current technical challenges and perspectives of ceramic electrodes for SCs are also discussed. 展开更多
关键词 Ceramic electrodes Component design Structure design Specific capacitance SUPERCAPACITORS
原文传递
Structure and dielectric properties of NBT-xBT-ST lead-free ceramics for energy storage
8
作者 Wen-Qin Luo zong-yang shen +3 位作者 Yuan-Ying Yu Fu-sheng Song Zhu-Mei Wang Yue-Ming Li 《Journal of Advanced Dielectrics》 CAS 2018年第6期3-7,共5页
(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and e... (0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and energy storage properties of NBT-xBT-ST ceramics were investigated.All the NBT-xBT-ST ceramics showed single perovskite structure with a pseudocubic phase.Ba doping effectively suppressed grain growth,in favor of forming small and uniform grains.The ceramics with a composition of x=0.04,an optimized energy storage density(γ=0.47 J/cm^(3))and efficiency(η=48:67%),under an applied electric field of 50 kV/cm,should be a candidate for solid-state compact pulsed power capacitor materials. 展开更多
关键词 Sodium bismuth titanate barium strontium titanate energy storage ceramics compact pulsed power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部