Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents...Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.展开更多
Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cat...Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cathodes is accompanied by substantial safety and cycle-life obstacles. The major issues of Ni-rich cathodes at high working potentials are originated from the unstable cathode-electrolyte interface, while the underlying mechanism of parasitic reactions towards surface reconstructions of cathode materials is not well understood. In this work, we controlled the Li_(2)CO_(3) impurity content on LiNi_(0.83)Mn_(0.1)Co_(0.07)O_(2) cathodes using air, tank-air, and O_(2) synthesis environments. Home-built high-precision leakage current and on-line electrochemical mass spectroscopy experiments verify that Li_(2)CO_(3) impurity is a significant promoter of parasitic reactions on Ni-rich cathodes. The rate of parasitic reactions is strongly correlated to Li_(2)CO_(3) content and severe performance deterioration of Ni83 cathodes.The post-mortem characterizations via high-resolution transition electron microscope and X-ray photoelectron spectroscopy depth profiles reveal that parasitic reactions promote more Ni reduction and O deficiency and even rock-salt phase transformation at the surface of cathode materials. Our observation suggests that surface reconstructions have a strong affiliation to parasitic reactions that create chemically acidic environment to etch away the lattice oxygen and offer the electrical charge to reduce the valence state of transition metal. Thus, this study advances our understanding on surface reconstructions of Nirich cathodes and prepares us for searching for rational strategies.展开更多
The commercialization of nickel-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) has been hindered by its continuous loss of practical capacity and reduction in average working voltage.To address these issues,surface modi...The commercialization of nickel-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) has been hindered by its continuous loss of practical capacity and reduction in average working voltage.To address these issues,surface modification has been well-recognized as an effective strategy.Different from the coatings reported in literature to date,in this work,we for the first time report a sulfide coating,amorphous Li_(2)S via atomic layer deposition (ALD).Our study revealed that the conformal nano-Li_(2)S coating shows exceptional protection over the NMC811 cathodes,accounting for the dramatically boosted capacity retention from~11.6%to~71%and the evidently mitigated voltage reduction from 0.39 to 0.18 V after 500 charge–discharge cycles.In addition,the Li_(2)S coating remarkably improved the rate capability of the NMC811 cathode.Our investigation further revealed that all these beneficial effects of the ALD-deposited nano-Li_(2)S coating lie in the following aspects:(i) maintain the mechanical integrity of the NMC811 electrode:(ii) stabilize the NMC electrode/electrolyte interface:and (iii) suppress the irreversible phase transition of NMC structure.Particularly,this study also has revealed that the nano-Li_(2)S coating has played some unique role not associated with traditional non-sulfide coatings such as oxides.In this regard,we disclosed that the Li_(2)S layer has reacted with the released O_(2) from the NMC lattices,and thereby has dramatically mitigated electrolyte oxidation and electrode corrosion.Thus,this study is significant and has demonstrated that sulfides may be an important class of coating materials to tackle the issues of NMCs and other layered cathodes in lithium batteries.展开更多
Dear editor,This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning.Specifically,a cloud-based framework for battery full life cycle management is present...Dear editor,This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning.Specifically,a cloud-based framework for battery full life cycle management is presented.Then,the broad learning method is proposed for battery state-of-health(SOH)prediction.展开更多
This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions a...This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.展开更多
This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed...This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed and a robust growing algorithm is developed to extract the underlying linear structure of the observed data.Under the structural density assumption,the C-step technique borrowed from the Rousseeuw's robust MCD estimator is used to keep the algorithm robust and the mean-shift algorithm is adopted to ensure a good initialization.To eliminate the model ambiguities of the multiple-structural data,statistical hypotheses tests are used to refine the data classification and improve the accuracy of the model parameter estimation.Experiments show that the efficiency and robustness of the proposed algorithm.展开更多
In this paper we review a number of recent developments in the study of quantum tomography which is one of the useful methods for quantum state estimation and quantum information acquisition, having sparked explosion ...In this paper we review a number of recent developments in the study of quantum tomography which is one of the useful methods for quantum state estimation and quantum information acquisition, having sparked explosion of interest in recent years. The quantum process tomography is also analyzed. At the same time, some success experiments and applications of quantum tomography are introduced. Finally, a number of open problems and future directions in this field are proposed.展开更多
The proton exchange membrane fuel cell,as a novel energy device,exhibits a wide array of potential applications.This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell ...The proton exchange membrane fuel cell,as a novel energy device,exhibits a wide array of potential applications.This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell systems.It commences with a concise introduction to the structure and principles of fuel cells.Subsequently,it outlines modeling approaches for various fuel cell subsystems,encompassing the fuel cell stack,air supply system,hydrogen supply system,thermal management system,and water management system.Following this,it conducts a comparative analysis and discussion of prevalent control strategies for the aforementioned subsystems.Lastly,the paper outlines future research trends and directions in the modeling and control strategies of fuel cells.The aim of this paper is to provide ideas and inspirations for the design and management of membrane fuel cell systems from control aspects.展开更多
For finite-dimensional quantum systems,we propose a quantum control scheme based on a multi-step unitary evolution and quantum projective measurements.The objective is to design a control law to steer the system to a ...For finite-dimensional quantum systems,we propose a quantum control scheme based on a multi-step unitary evolution and quantum projective measurements.The objective is to design a control law to steer the system to a target eigenstate of the measurement operator in the least number of steps.Within each control step,unitary evolution and quantum projective measurement are performed in turn until the system reaches the target state.The control process can be modeled as a finite-state Markov chain with an absorbing state.We prove that the controlled system will converge to the target eigenstate with probability one after a finite number of control steps and find a minimal-step-number condition that would steer the system to the target eigenstate in the least number of steps.展开更多
This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy a...This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy and extension PID controllers, the proposed extension PID predictable controller shows higher control gains when system states are away from equilibrium, and retains a lower profile of control signals at the same time. Consequently, better control performance is achieved. Through the proposed tuning formula, the weighting factors of an extension-logic predictable controller can be systematically selected according to the control plant. An experimental example through industrial field data and site engineers' experience demonstrates the superior performance of the proposed controller over the fuzzy controller.展开更多
With the continuous advancement and exploration of science and technology,the future trend of energy technology will be the deep integration of digitization,networking,intelligence with energy applications.The increas...With the continuous advancement and exploration of science and technology,the future trend of energy technology will be the deep integration of digitization,networking,intelligence with energy applications.The increasing maturity of digital technologies,such as the Internet of Things,big data,and cloud computing,has given rise to the creation and use of a potential technology–Digital Twin.Currently,research on Digital Twin has produced many concepts and outcomes that have been applied in many fields.In the energy sector,while some relevant ideas and case studies of Digital Twin have been generated,there are still many gaps to be explored.As a potential technology with advantages in many aspects,Digital Twin is bound to generate more promotion and applications in the energy fields.This paper systematically reviews the existing Digital Twin approaches and their possible applications in the energy fields.In addition,this paper attempts to analyze Digital Twin from different perspectives,such as definitions,classifications,main features,case studies and key technologies.Finally,the directions and challenges of possible future applications of Digital Twin in the energy fields have been presented.展开更多
基金the financial support from Intecells Inc.via an award number AWD_19-08-0127the support from Paul M.Rady Mechanical Engineering Department at University of Colorado Boulder
文摘Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.
基金supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Officesupported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract No. DE-SC0012704+1 种基金supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357supported by the Vehicle Technologies Office of the U.S. Department of Energy。
文摘Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cathodes is accompanied by substantial safety and cycle-life obstacles. The major issues of Ni-rich cathodes at high working potentials are originated from the unstable cathode-electrolyte interface, while the underlying mechanism of parasitic reactions towards surface reconstructions of cathode materials is not well understood. In this work, we controlled the Li_(2)CO_(3) impurity content on LiNi_(0.83)Mn_(0.1)Co_(0.07)O_(2) cathodes using air, tank-air, and O_(2) synthesis environments. Home-built high-precision leakage current and on-line electrochemical mass spectroscopy experiments verify that Li_(2)CO_(3) impurity is a significant promoter of parasitic reactions on Ni-rich cathodes. The rate of parasitic reactions is strongly correlated to Li_(2)CO_(3) content and severe performance deterioration of Ni83 cathodes.The post-mortem characterizations via high-resolution transition electron microscope and X-ray photoelectron spectroscopy depth profiles reveal that parasitic reactions promote more Ni reduction and O deficiency and even rock-salt phase transformation at the surface of cathode materials. Our observation suggests that surface reconstructions have a strong affiliation to parasitic reactions that create chemically acidic environment to etch away the lattice oxygen and offer the electrical charge to reduce the valence state of transition metal. Thus, this study advances our understanding on surface reconstructions of Nirich cathodes and prepares us for searching for rational strategies.
基金support from the Center for Advanced Surface Engineering, under the National Science Foundation Grant No. OIA-1457888the Arkansas EPSCoR Program, ASSET Ⅲ. X. M+1 种基金the financial support from the University of Arkansas, Fayetteville, AR, USAfunded by the U.S. Department of Energy (DOE), Vehicle Technologies Office。
文摘The commercialization of nickel-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) has been hindered by its continuous loss of practical capacity and reduction in average working voltage.To address these issues,surface modification has been well-recognized as an effective strategy.Different from the coatings reported in literature to date,in this work,we for the first time report a sulfide coating,amorphous Li_(2)S via atomic layer deposition (ALD).Our study revealed that the conformal nano-Li_(2)S coating shows exceptional protection over the NMC811 cathodes,accounting for the dramatically boosted capacity retention from~11.6%to~71%and the evidently mitigated voltage reduction from 0.39 to 0.18 V after 500 charge–discharge cycles.In addition,the Li_(2)S coating remarkably improved the rate capability of the NMC811 cathode.Our investigation further revealed that all these beneficial effects of the ALD-deposited nano-Li_(2)S coating lie in the following aspects:(i) maintain the mechanical integrity of the NMC811 electrode:(ii) stabilize the NMC electrode/electrolyte interface:and (iii) suppress the irreversible phase transition of NMC structure.Particularly,this study also has revealed that the nano-Li_(2)S coating has played some unique role not associated with traditional non-sulfide coatings such as oxides.In this regard,we disclosed that the Li_(2)S layer has reacted with the released O_(2) from the NMC lattices,and thereby has dramatically mitigated electrolyte oxidation and electrode corrosion.Thus,this study is significant and has demonstrated that sulfides may be an important class of coating materials to tackle the issues of NMCs and other layered cathodes in lithium batteries.
基金supported by the National Key Research and Development Program of China(2020YFB1712400)。
文摘Dear editor,This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning.Specifically,a cloud-based framework for battery full life cycle management is presented.Then,the broad learning method is proposed for battery state-of-health(SOH)prediction.
基金supported by the National Natural Science Foundation of China(61375079)
文摘This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA04Z227)
文摘This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed and a robust growing algorithm is developed to extract the underlying linear structure of the observed data.Under the structural density assumption,the C-step technique borrowed from the Rousseeuw's robust MCD estimator is used to keep the algorithm robust and the mean-shift algorithm is adopted to ensure a good initialization.To eliminate the model ambiguities of the multiple-structural data,statistical hypotheses tests are used to refine the data classification and improve the accuracy of the model parameter estimation.Experiments show that the efficiency and robustness of the proposed algorithm.
文摘In this paper we review a number of recent developments in the study of quantum tomography which is one of the useful methods for quantum state estimation and quantum information acquisition, having sparked explosion of interest in recent years. The quantum process tomography is also analyzed. At the same time, some success experiments and applications of quantum tomography are introduced. Finally, a number of open problems and future directions in this field are proposed.
基金supported by the National Natural Science Foundation of China(Grant No.62373340).
文摘The proton exchange membrane fuel cell,as a novel energy device,exhibits a wide array of potential applications.This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell systems.It commences with a concise introduction to the structure and principles of fuel cells.Subsequently,it outlines modeling approaches for various fuel cell subsystems,encompassing the fuel cell stack,air supply system,hydrogen supply system,thermal management system,and water management system.Following this,it conducts a comparative analysis and discussion of prevalent control strategies for the aforementioned subsystems.Lastly,the paper outlines future research trends and directions in the modeling and control strategies of fuel cells.The aim of this paper is to provide ideas and inspirations for the design and management of membrane fuel cell systems from control aspects.
基金supported by the National Natural Science Foundation of China(60804020)
文摘For finite-dimensional quantum systems,we propose a quantum control scheme based on a multi-step unitary evolution and quantum projective measurements.The objective is to design a control law to steer the system to a target eigenstate of the measurement operator in the least number of steps.Within each control step,unitary evolution and quantum projective measurement are performed in turn until the system reaches the target state.The control process can be modeled as a finite-state Markov chain with an absorbing state.We prove that the controlled system will converge to the target eigenstate with probability one after a finite number of control steps and find a minimal-step-number condition that would steer the system to the target eigenstate in the least number of steps.
基金This work is supported by Youth Foundation of University of Science and Techonology of China(No.KA0001).
文摘This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy and extension PID controllers, the proposed extension PID predictable controller shows higher control gains when system states are away from equilibrium, and retains a lower profile of control signals at the same time. Consequently, better control performance is achieved. Through the proposed tuning formula, the weighting factors of an extension-logic predictable controller can be systematically selected according to the control plant. An experimental example through industrial field data and site engineers' experience demonstrates the superior performance of the proposed controller over the fuzzy controller.
基金National Key Research and Development Program of China(Grant No.2020YFB1712400).
文摘With the continuous advancement and exploration of science and technology,the future trend of energy technology will be the deep integration of digitization,networking,intelligence with energy applications.The increasing maturity of digital technologies,such as the Internet of Things,big data,and cloud computing,has given rise to the creation and use of a potential technology–Digital Twin.Currently,research on Digital Twin has produced many concepts and outcomes that have been applied in many fields.In the energy sector,while some relevant ideas and case studies of Digital Twin have been generated,there are still many gaps to be explored.As a potential technology with advantages in many aspects,Digital Twin is bound to generate more promotion and applications in the energy fields.This paper systematically reviews the existing Digital Twin approaches and their possible applications in the energy fields.In addition,this paper attempts to analyze Digital Twin from different perspectives,such as definitions,classifications,main features,case studies and key technologies.Finally,the directions and challenges of possible future applications of Digital Twin in the energy fields have been presented.