Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems s...Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.展开更多
At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale pro...At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale production of high-quality PSC films.In this study,we successfully developed a strategy to improve the long-term stability of the precursor solution and improve device performance by employing 1-n-butyl-3-methylimidazolium di-n-butyl phosphate(BMIMBP)as an anti-aging additive.The BP−component inhibits the reactivity of I−and formamidinium ion through multiple chemical bonds,thereby stabilizing the precursor solution.In addition,the BMIM+component,which contains an amino group,can form two-dimensional perovskite internally,further enhancing the device stability.This strategy provides valuable guidance for achieving long-term stability in solar cells.展开更多
基金support from the National Natural Science Foundation of China(NSFC)(52163019,22005131,52173169 and U20A20128)support from the Natural Science Foundation of Jiangxi Province(20224ACB214006)。
文摘Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.
基金the support from the National Natural Science Foundation of China(NSFC)(U20A20128,52163019 and 51963016)the support from the Natural Science Foundation of Jiangxi Province(20224ACB214006 and 20232ACB204005)。
文摘At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale production of high-quality PSC films.In this study,we successfully developed a strategy to improve the long-term stability of the precursor solution and improve device performance by employing 1-n-butyl-3-methylimidazolium di-n-butyl phosphate(BMIMBP)as an anti-aging additive.The BP−component inhibits the reactivity of I−and formamidinium ion through multiple chemical bonds,thereby stabilizing the precursor solution.In addition,the BMIM+component,which contains an amino group,can form two-dimensional perovskite internally,further enhancing the device stability.This strategy provides valuable guidance for achieving long-term stability in solar cells.
基金financially supported by the National Natural Science Foundation of China(NSFC,52163019,22005131,52173169 and U20A20128)the support from the Postdoctoral Innovative Talents Support Program(BX2021117)+1 种基金China Postdoctoral Science Foundation(2021M700060)the Graduate Students Innovation Special Foundation of Jiangxi Province(YC2022-B009)。