Diterpenoid alkaloids(DAs) have been often utilized in clinical practice due to their analgesic and anti-infammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Ne...Diterpenoid alkaloids(DAs) have been often utilized in clinical practice due to their analgesic and anti-infammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown.In this study, we successfully assembled a highquality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum(A.vilmorinianum)(5.76 Gb). An A. vilmorinianumspecific whole-genome duplication event was discovered using comparative genomic analysis,which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A.vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.展开更多
Novel polyoxometalate(POM)Pickering interfacial catalyst(PIC)was fabricated through loading(NH_(4))_(5)H_(6)PMo_(4)V_(8)O_(40)(PMo_(4)V_(8))on both alkyl and alkyl-amino groups functionalized silica nanoparticles.PMo_...Novel polyoxometalate(POM)Pickering interfacial catalyst(PIC)was fabricated through loading(NH_(4))_(5)H_(6)PMo_(4)V_(8)O_(40)(PMo_(4)V_(8))on both alkyl and alkyl-amino groups functionalized silica nanoparticles.PMo_(4)V_(8)/SiO_(2)(C_(8)/C_(8)NH_(2)with molar ratio as 1:1)PIC system provided a new catalytic model for aerobic conversion of 5-hydroxymethylfurfural(5-HMF),as well as its recovery and product separation in H_(2)O/methyl isobutyl ketone(MIBK)biphase reaction.Balancing the ratio of PMo_(4)V_(8),C_(8)and C_(8)NH_(2)gave rise to variety in hydrophilicity and hydrophobicity for PMo_(4)V_(8)/SiO_(2)(C_(8)/C_(8)NH_(2)),which enhanced the transformation of 5-HMF to 2,5-diformylfuran(DFF)in H_(2)O/MIBK with 73.7%yield at 81.8%conversion than in H_(2)O or MIBK single phase.展开更多
基金supported by funding from the CAS “Pioneer Hundred Talents” Program and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) to Y.C.National Natural Science Foundation of China (Nos. 31960082, 32270395, and 31960096)Yunnan Fundamental Research Projects (No. 202101AS070021) to D.Z。
文摘Diterpenoid alkaloids(DAs) have been often utilized in clinical practice due to their analgesic and anti-infammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown.In this study, we successfully assembled a highquality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum(A.vilmorinianum)(5.76 Gb). An A. vilmorinianumspecific whole-genome duplication event was discovered using comparative genomic analysis,which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A.vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.
基金supported by National Natural Science Foundation of China(No.51978134)Jilin Provincial Science and Technology Department(No.20210203205SF)。
文摘Novel polyoxometalate(POM)Pickering interfacial catalyst(PIC)was fabricated through loading(NH_(4))_(5)H_(6)PMo_(4)V_(8)O_(40)(PMo_(4)V_(8))on both alkyl and alkyl-amino groups functionalized silica nanoparticles.PMo_(4)V_(8)/SiO_(2)(C_(8)/C_(8)NH_(2)with molar ratio as 1:1)PIC system provided a new catalytic model for aerobic conversion of 5-hydroxymethylfurfural(5-HMF),as well as its recovery and product separation in H_(2)O/methyl isobutyl ketone(MIBK)biphase reaction.Balancing the ratio of PMo_(4)V_(8),C_(8)and C_(8)NH_(2)gave rise to variety in hydrophilicity and hydrophobicity for PMo_(4)V_(8)/SiO_(2)(C_(8)/C_(8)NH_(2)),which enhanced the transformation of 5-HMF to 2,5-diformylfuran(DFF)in H_(2)O/MIBK with 73.7%yield at 81.8%conversion than in H_(2)O or MIBK single phase.